![]() ; ; et al in Cell Genomics (2023) We characterized the role of structural variants, a largely unexplored type of genetic variation, in two non-Alzheimer’s dementias, namely Lewy body dementia (LBD) and frontotemporal dementia (FTD ... [more ▼] We characterized the role of structural variants, a largely unexplored type of genetic variation, in two non-Alzheimer’s dementias, namely Lewy body dementia (LBD) and frontotemporal dementia (FTD)/amyotrophic lateral sclerosis (ALS). To do this, we applied an advanced structural variant calling pipeline (GATK-SV) to short-read whole-genome sequence data from 5,213 European-ancestry cases and 4,132 controls. We discovered, replicated, and validated a deletion in TPCN1 as a novel risk locus for LBD and detected the known structural variants at the C9orf72 and MAPT loci as associated with FTD/ALS. We also identified rare pathogenic structural variants in both LBD and FTD/ALS. Finally, we assembled a catalog of structural variants that can be mined for new insights into the pathogenesis of these understudied forms of dementia. [less ▲] Detailed reference viewed: 47 (0 UL)![]() ; ; et al in Movement Disorders (2023), 38(2), 286--303 BACKGROUND: As gene-targeted therapies are increasingly being developed for Parkinson's disease (PD), identifying and characterizing carriers of specific genetic pathogenic variants is imperative. Only a ... [more ▼] BACKGROUND: As gene-targeted therapies are increasingly being developed for Parkinson's disease (PD), identifying and characterizing carriers of specific genetic pathogenic variants is imperative. Only a small fraction of the estimated number of subjects with monogenic PD worldwide are currently represented in the literature and availability of clinical data and clinical trial-ready cohorts is limited. OBJECTIVE: The objectives are to (1) establish an international cohort of affected and unaffected individuals with PD-linked variants; (2) provide harmonized and quality-controlled clinical characterization data for each included individual; and (3) further promote collaboration of researchers in the field of monogenic PD. METHODS: We conducted a worldwide, systematic online survey to collect individual-level data on individuals with PD-linked variants in SNCA, LRRK2 VPS35, PRKN, PINK1, DJ-1, as well as selected pathogenic and risk variants in GBA and corresponding demographic, clinical, and genetic data. All registered cases underwent thorough quality checks, and pathogenicity scoring of the variants and genotype-phenotype relationships were analyzed. RESULTS: We collected 3888 variant carriers for our analyses, reported by 92 centers (42 countries) worldwide. Of the included individuals 3185 had a diagnosis of PD (ie, 1306 LRRK2, 115 SNCA, 23 VPS35 429 PRKN, 75 PINK1, 13 DJ-1, and 1224 GBA) and 703 were unaffected (ie, 328 LRRK2, 32 SNCA, 3 VPS35, 1 PRKN, 1 PINK1, and 338 GBA). In total, we identified 269 different pathogenic variants; 1322 individuals in our cohort (34\%) were indicated as not previously published. CONCLUSIONS: Within the MJFF Global Genetic PD Study Group, we (1) established the largest international cohort of affected and unaffected individuals carrying PD-linked variants; (2) provide harmonized and quality-controlled clinical and genetic data for each included individual; (3) promote collaboration in the field of genetic PD with a view toward clinical and genetic stratification of patients for gene-targeted clinical trials. 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. [less ▲] Detailed reference viewed: 34 (1 UL)![]() ; ; et al in Nature Genetics (2021) The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic ... [more ▼] The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic architecture of this understudied form of dementia, and to generate a resource for the scientific community. Genome-wide association analysis identified five independent risk loci, whereas genome-wide gene-aggregation tests implicated mutations in the gene GBA. Genetic risk scores demonstrate that LBD shares risk profiles and pathways with Alzheimer’s disease and Parkinson’s disease, providing a deeper molecular understanding of the complex genetic architecture of this age-related neurodegenerative condition. [less ▲] Detailed reference viewed: 98 (3 UL)![]() ; ; et al E-print/Working paper (2020) The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic ... [more ▼] The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic architecture of this understudied form of dementia and to generate a resource for the scientific community. Genome-wide association analysis identified five independent risk loci, whereas genome-wide gene-aggregation tests implicated mutations in the gene GBA. Genetic risk scores demonstrate that LBD shares risk profiles and pathways with Alzheimer’s and Parkinson’s disease, providing a deeper molecular understanding of the complex genetic architecture of this age-related neurodegenerative condition.Competing Interest StatementThomas G. Beach is a consultant for Prothena, Vivid Genomics and Avid Radiopharmaceuticals. He is a scientific advisory board member for Vivid Genomics. John A. Hardy, Huw R. Morris, Stuart Pickering-Brown, Andrew B. Singleton, and Bryan J. Traynor hold US, EU and Canadian patents on the clinical testing and therapeutic intervention for the hexanucleotide repeat expansion of C9orf72. Michael A. Nalls is supported by a consulting contract between Data Tecnica International and the National Institute on Aging, NIH, Bethesda, MD, USA; as a possible conflict of interest Dr. Nalls also consults for Neuron23 Inc., Lysosomal Therapeutics Inc., Illumina Inc., the Michael J. Fox Foundation and Vivid Genomics among others. Jose A. Palma is an editorial board member of Movement Disorders, Parkinsonism & Related Disorders, BMC Neurology, and Clinical Autonomic Research. Bradley F. Boeve, James Leverenz, and Sonja W. Scholz serve on the Scientific Advisory Council of the Lewy Body Dementia Association. Sonja W. Scholz is an editorial board member for the Journal of Parkinson's Disease. Bryan J. Traynor is an editorial board member for JAMA Neurology; Journal of Neurology, Neurosurgery, and Psychiatry; Brain; and Neurobiology of Aging. Zbigniew K. Wszolek serves as a principal investigator or co-principal investigator on Abbvie, Inc. (M15-562 and M15-563), Biogen, Inc. (228PD201) grant, and Biohaven Pharmaceuticals, Inc. (BHV4157-206 and BHV3241-301). Zbigniew K. Wszolek serves as the principal investigator of the Mayo Clinic American Parkinson Disease Association (APDA) Information and Referral Center, and as co-principal investigator of the Mayo Clinic APDA Center for Advanced Research. All other authors report no competing interests. [less ▲] Detailed reference viewed: 214 (3 UL)![]() ; ; et al in Neurology (2014) OBJECTIVES: The objective of this study is to clarify the role of (G4C2)n expansions in the etiology of Parkinson disease (PD) in the worldwide multicenter Genetic Epidemiology of Parkinson's Disease (GEO ... [more ▼] OBJECTIVES: The objective of this study is to clarify the role of (G4C2)n expansions in the etiology of Parkinson disease (PD) in the worldwide multicenter Genetic Epidemiology of Parkinson's Disease (GEO-PD) cohort. METHODS: C9orf72 (G4C2)n repeats were assessed in a GEO-PD cohort of 7,494 patients diagnosed with PD and 5,886 neurologically healthy control individuals ascertained in Europe, Asia, North America, and Australia. RESULTS: A pathogenic (G4C2)n>60 expansion was detected in only 4 patients with PD (4/7,232; 0.055%), all with a positive family history of neurodegenerative dementia, amyotrophic lateral sclerosis, or atypical parkinsonism, while no carriers were detected with typical sporadic or familial PD. Meta-analysis revealed a small increase in risk of PD with an increasing number of (G4C2)n repeats; however, we could not detect a robust association between the C9orf72 (G4C2)n repeat and PD, and the population attributable risk was low. CONCLUSIONS: Together, these findings indicate that expansions in C9orf72 do not have a major role in the pathogenesis of PD. Testing for C9orf72 repeat expansions should only be considered in patients with PD who have overt symptoms of frontotemporal lobar degeneration/amyotrophic lateral sclerosis or apparent family history of neurodegenerative dementia or motor neuron disease. [less ▲] Detailed reference viewed: 163 (7 UL)![]() ; ; et al in Neurobiology of Aging (2014), 35(1), 2665-14 The best validated susceptibility variants for Parkinson's disease are located in the alpha-synuclein (SNCA) and microtubule-associated protein tau (MAPT) genes. Recently, a protective p.N551K-R1398H ... [more ▼] The best validated susceptibility variants for Parkinson's disease are located in the alpha-synuclein (SNCA) and microtubule-associated protein tau (MAPT) genes. Recently, a protective p.N551K-R1398H-K1423K haplotype in the leucine-rich repeat kinase 2 (LRRK2) gene was identified, with p.R1398H appearing to be the most likely functional variant. To date, the consistency of the protective effect of LRRK2 p.R1398H across MAPT and SNCA variant genotypes has not been assessed. To address this, we examined 4 SNCA variants (rs181489, rs356219, rs11931074, and rs2583988), the MAPT H1-haplotype-defining variant rs1052553, and LRRK2 p.R1398H (rs7133914) in Caucasian (n = 10,322) and Asian (n = 2289) series. There was no evidence of an interaction of LRRK2 p.R1398H with MAPT or SNCA variants (all p >/= 0.10); the protective effect of p.R1398H was observed at similar magnitude across MAPT and SNCA genotypes, and the risk effects of MAPT and SNCA variants were observed consistently for LRRK2 p.R1398H genotypes. Our results indicate that the association of LRRK2 p.R1398H with Parkinson's disease is independent of SNCA and MAPT variants, and vice versa, in Caucasian and Asian populations. [less ▲] Detailed reference viewed: 193 (7 UL)![]() ; ; et al in Movement Disorders (2014) OBJECTIVES: To determine whether alpha-synuclein dinucleotide repeat (REP1) genotypes are associated with survival in Parkinson's disease (PD). METHODS: Investigators from the Genetic Epidemiology of ... [more ▼] OBJECTIVES: To determine whether alpha-synuclein dinucleotide repeat (REP1) genotypes are associated with survival in Parkinson's disease (PD). METHODS: Investigators from the Genetic Epidemiology of Parkinson's Disease Consortium provided REP1 genotypes and baseline and follow-up clinical data for cases. The primary outcome was time to death. Cox proportional hazards regression models were used to assess the association of REP1 genotypes with survival. RESULTS: Twenty-one sites contributed data for 6,154 cases. There was no significant association between alpha-synuclein REP1 genotypes and survival in PD. However, there was a significant association between REP1 genotypes and age at onset of PD (hazard ratio: 1.06; 95% confidence interval: 1.01-1.10; P value = 0.01). CONCLUSIONS: In our large consortium study, alpha-synuclein REP1 genotypes were not associated with survival in PD. Further studies of alpha-synuclein's role in disease progression and long-term outcomes are needed. (c) 2014 International Parkinson and Movement Disorder Society. [less ▲] Detailed reference viewed: 194 (6 UL)![]() ; ; et al in Movement Disorders (2013), 28(12), 1740-4 BACKGROUND: Variants within the leucine-rich repeat kinase 2 gene are recognized as the most frequent genetic cause of Parkinson's disease. Leucine-rich repeat kinase 2 variation related to disease ... [more ▼] BACKGROUND: Variants within the leucine-rich repeat kinase 2 gene are recognized as the most frequent genetic cause of Parkinson's disease. Leucine-rich repeat kinase 2 variation related to disease susceptibility displays many features that reflect the nature of complex, late-onset sporadic disorders like Parkinson's disease. METHODS: The Genetic Epidemiology of Parkinson's Disease Consortium recently performed the largest genetic association study for variants in the leucine-rich repeat kinase 2 gene across 23 different sites in 15 countries. RESULTS: Herein, we detail the allele frequencies for the novel risk factors (p.A419V and p.M1646T) and the protective haplotype (p.N551K-R1398H-K1423K) nominated in the original publication. Simple population allele frequencies not only can provide insight into the clinical relevance of specific variants but also can help genetically define patient groups. CONCLUSIONS: Establishing individual patient-based genomic susceptibility profiles that incorporate both risk factors and protective factors will determine future diagnostic and treatment strategies. [less ▲] Detailed reference viewed: 126 (1 UL)![]() ; ; et al in Lancet Neurology (2011), 10(10), 898-908 BACKGROUND: Background The leucine-rich repeat kinase 2 gene (LRRK2) harbours highly penetrant mutations that are linked to familial parkinsonism. However, the extent of its polymorphic variability in ... [more ▼] BACKGROUND: Background The leucine-rich repeat kinase 2 gene (LRRK2) harbours highly penetrant mutations that are linked to familial parkinsonism. However, the extent of its polymorphic variability in relation to risk of Parkinson's disease (PD) has not been assessed systematically. We therefore assessed the frequency of LRRK2 exonic variants in individuals with and without PD, to investigate the role of the variants in PD susceptibility. METHODS: LRRK2 was genotyped in patients with PD and controls from three series (white, Asian, and Arab-Berber) from sites participating in the Genetic Epidemiology of Parkinson's Disease Consortium. Genotyping was done for exonic variants of LRRK2 that were identified through searches of literature and the personal communications of consortium members. Associations with PD were assessed by use of logistic regression models. For variants that had a minor allele frequency of 0.5% or greater, single variant associations were assessed, whereas for rarer variants information was collapsed across variants. FINDINGS: 121 exonic LRRK2 variants were assessed in 15 540 individuals: 6995 white patients with PD and 5595 controls, 1376 Asian patients and 962 controls, and 240 Arab-Berber patients and 372 controls. After exclusion of carriers of known pathogenic mutations, new independent risk associations were identified for polymorphic variants in white individuals (M1646T, odds ratio 1.43, 95% CI 1.15-1.78; p=0.0012) and Asian individuals (A419V, 2.27, 1.35-3.83; p=0.0011). A protective haplotype (N551K-R1398H-K1423K) was noted at a frequency greater than 5% in the white and Asian series, with a similar finding in the Arab-Berber series (combined odds ratio 0.82, 0.72-0.94; p=0.0043). Of the two previously reported Asian risk variants, G2385R was associated with disease (1.73, 1.20-2.49; p=0.0026), but no association was noted for R1628P (0.62, 0.36-1.07; p=0.087). In the Arab-Berber series, Y2189C showed potential evidence of risk association with PD (4.48, 1.33-15.09; p=0.012). INTERPRETATION: The results for LRRK2 show that several rare and common genetic variants in the same gene can have independent effects on disease risk. LRRK2, and the pathway in which it functions, is important in the cause and pathogenesis of PD in a greater proportion of patients with this disease than previously believed. These results will help discriminate those patients who will benefit most from therapies targeted at LRRK2 pathogenic activity. FUNDING: Michael J Fox Foundation and National Institutes of Health. [less ▲] Detailed reference viewed: 142 (1 UL)![]() ; ; et al in Annals of neurology (2011), 69(5), 778-92 OBJECTIVE: We studied the independent and joint effects of the genes encoding alpha-synuclein (SNCA) and microtubule-associated protein tau (MAPT) in Parkinson disease (PD) as part of a large meta ... [more ▼] OBJECTIVE: We studied the independent and joint effects of the genes encoding alpha-synuclein (SNCA) and microtubule-associated protein tau (MAPT) in Parkinson disease (PD) as part of a large meta-analysis of individual data from case-control studies participating in the Genetic Epidemiology of Parkinson's Disease (GEO-PD) consortium. METHODS: Participants of Caucasian ancestry were genotyped for a total of 4 SNCA (rs2583988, rs181489, rs356219, rs11931074) and 2 MAPT (rs1052553, rs242557) single nucleotide polymorphism (SNPs). Individual and joint effects of SNCA and MAPT SNPs were investigated using fixed- and random-effects logistic regression models. Interactions were studied on both a multiplicative and an additive scale, and using a case-control and case-only approach. RESULTS: Fifteen GEO-PD sites contributed a total of 5,302 cases and 4,161 controls. All 4 SNCA SNPs and the MAPT H1-haplotype-defining SNP (rs1052553) displayed a highly significant marginal association with PD at the significance level adjusted for multiple comparisons. For SNCA, the strongest associations were observed for SNPs located at the 3' end of the gene. There was no evidence of statistical interaction between any of the 4 SNCA SNPs and rs1052553 or rs242557, neither on the multiplicative nor on the additive scale. INTERPRETATION: This study confirms the association between PD and both SNCA SNPs and the H1 MAPT haplotype. It shows, based on a variety of approaches, that the joint action of variants in these 2 loci is consistent with independent effects of the genes without additional interacting effects. [less ▲] Detailed reference viewed: 154 (0 UL) |
||