References of "Wilm, B."
     in
Bookmark and Share    
Peer Reviewed
See detailPax1 and Pax9 synergistically regulate vertebral column development.
Peters, H.; Wilm, B.; Sakai, N. et al

in Development (1999), 126(23), 5399-408

The paralogous genes Pax1 and Pax9 constitute one group within the vertebrate Pax gene family. They encode closely related transcription factors and are expressed in similar patterns during mouse ... [more ▼]

The paralogous genes Pax1 and Pax9 constitute one group within the vertebrate Pax gene family. They encode closely related transcription factors and are expressed in similar patterns during mouse embryogenesis, suggesting that Pax1 and Pax9 act in similar developmental pathways. We have recently shown that mice homozygous for a defined Pax1 null allele exhibit morphological abnormalities of the axial skeleton, which is not affected in homozygous Pax9 mutants. To investigate a potential interaction of the two genes, we analysed Pax1/Pax9 double mutant mice. These mutants completely lack the medial derivatives of the sclerotomes, the vertebral bodies, intervertebral discs and the proximal parts of the ribs. This phenotype is much more severe than that of Pax1 single homozygous mutants. In contrast, the neural arches, which are derived from the lateral regions of the sclerotomes, are formed. The analysis of Pax9 expression in compound mutants indicates that both spatial expansion and upregulation of Pax9 expression account for its compensatory function during sclerotome development in the absence of Pax1. In Pax1/Pax9 double homozygous mutants, formation and anteroposterior polarity of sclerotomes, as well as induction of a chondrocyte-specific cell lineage, appear normal. However, instead of a segmental arrangement of vertebrae and intervertebral disc anlagen, a loose mesenchyme surrounding the notochord is formed. The gradual loss of Sox9 and Collagen II expression in this mesenchyme indicates that the sclerotomes are prevented from undergoing chondrogenesis. The first detectable defect is a low rate of cell proliferation in the ventromedial regions of the sclerotomes after sclerotome formation but before mesenchymal condensation normally occurs. At later stages, an increased number of cells undergoing apoptosis further reduces the area normally forming vertebrae and intervertebral discs. Our results reveal functional redundancy between Pax1 and Pax9 during vertebral column development and identify an early role of Pax1 and Pax9 in the control of cell proliferation during early sclerotome development. In addition, our data indicate that the development of medial and lateral elements of vertebrae is regulated by distinct genetic pathways. [less ▲]

Detailed reference viewed: 59 (1 UL)
Peer Reviewed
See detailTargeted disruption of Pax1 defines its null phenotype and proves haploinsufficiency.
Wilm, B.; Dahl, E.; Peters, H. et al

in Proceedings of the National Academy of Sciences of the United States of America (1998), 95(15), 8692-7

The murine paired box-containing gene Pax1 is required for normal development of the vertebral column, the sternum, and the scapula. Previous studies have shown that three natural Pax1 mouse mutants, the ... [more ▼]

The murine paired box-containing gene Pax1 is required for normal development of the vertebral column, the sternum, and the scapula. Previous studies have shown that three natural Pax1 mouse mutants, the undulated alleles, exhibit phenotypes of different severity in these skeletal elements. Nevertheless, these analyses have not clarified whether the semidominant Undulated short-tail (Uns) mutation, in which the complete Pax1 locus is deleted, represents a null allele. Moreover, the analyses of the classical undulated mutants did not allow a conclusion with respect to haploinsufficiency of Pax1. To address both questions we have created a Pax1 null allele in mice by gene targeting. Surprisingly, the phenotype of this defined mutation exhibits clear differences to that of Uns. This result strongly indicates the contribution of additional gene(s) to the Uns mutant phenotype. Furthermore, the phenotype of mice heterozygous for the null allele demonstrates that Pax1 is haploinsufficient in some though not all skeletal elements which express Pax1 during embryonic development. [less ▲]

Detailed reference viewed: 113 (0 UL)