![]() ; ; et al in Surveys in Geophysics (2010), 31(5), 465-507 The provision of accurate models of Glacial Isostatic Adjustment (GIA) is presently a priority need in climate studies, largely due to the potential of the Gravity Recovery and Climate Experiment (GRACE ... [more ▼] The provision of accurate models of Glacial Isostatic Adjustment (GIA) is presently a priority need in climate studies, largely due to the potential of the Gravity Recovery and Climate Experiment (GRACE) data to be used to determine accurate and continent-wide assessments of ice mass change and hydrology. However, modelled GIA isuncertain due to insufficient constraints on our knowledge of past glacial changes and to large simplifications in the underlying Earth models. Consequently, we show differences between models that exceed several mm/year in terms of surface displacement for the two major ice sheets: Greenland and Antarctica. Geodetic measurements of surface displacement offer the potential for new constraints to be made on GIA models, especially when they are used to improve structural features of the Earth’s interior as to allow for a more realistic reconstruction of the glaciation history. We present the distribution of presently available campaign and continuous geodetic measurements in Greenland and Antarctica and summarise surface velocities published to date, showing substantial disagreement between techniques and GIA models alike. We review the current state-of-the-art in ground-based geodesy (GPS, VLBI, DORIS, SLR) in determining accurate and precise surface velocities. In particular, we focus on known areas of need in GPS observation level models and the terrestrial reference frame in order to advance geodetic observation precision/ accuracy toward 0.1 mm/year and therefore further constrain models of GIA and subsequent present-day ice mass change estimates. [less ▲] Detailed reference viewed: 132 (3 UL)![]() ![]() ; ; et al in Metrologia (2002), 39(5), 407-427 The Sixth International Comparison of Absolute Gravimeters was held from 5 June to 28 August 2001 at the Bureau International des Poids et Mesures (BIPM), Sevres. Seventeen absolute gravimeters were used ... [more ▼] The Sixth International Comparison of Absolute Gravimeters was held from 5 June to 28 August 2001 at the Bureau International des Poids et Mesures (BIPM), Sevres. Seventeen absolute gravimeters were used to make measurements at five sites of the BIPM gravity network. The vertical gravity gradients at the sites and the ties between them were also measured using seventeen relative gravimeters. For the first time the ties were also measured using absolute gravimeters. Various methods of processing the absolute and relative data were tested to calculate the results. The final results of ICAG-2001 are presented. The acceleration due to gravity at a height of 0.90 m is given as (980925701.2 ± 5.5) Gal and (980928018.8 ± 5.5) Gal for sites A and B, respectively, calculated using a combined adjustment of the absolute and relative data. [less ▲] Detailed reference viewed: 136 (4 UL) |
||