References of "Williams, Julie"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailGenetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing
Kunkle, Brian W.; Grenier-Boley, Benjamin; Sims, Rebecca et al

in Nature Genetics (2019), 51(3), 414

Risk for late-onset Alzheimer's disease (LOAD), the most prevalent dementia, is partially driven by genetics. To identify LOAD risk loci, we performed a large genome-wide association meta-analysis of ... [more ▼]

Risk for late-onset Alzheimer's disease (LOAD), the most prevalent dementia, is partially driven by genetics. To identify LOAD risk loci, we performed a large genome-wide association meta-analysis of clinically diagnosed LOAD (94,437 individuals). We confirm 20 previous LOAD risk loci and identify five new genome-wide loci (IQCK, ACE, ADAM10, ADAMTS1, and WWOX), two of which (ADAM10, ACE) were identified in a recent genome-wide association (GWAS)-by-familial-proxy of Alzheimer's or dementia. Fine-mapping of the human leukocyte antigen (HLA) region confirms the neurological and immune-mediated disease haplotype HLA-DR15 as a risk factor for LOAD. Pathway analysis implicates immunity, lipid metabolism, tau binding proteins, and amyloid precursor protein (APP) metabolism, showing that genetic variants affecting APP and A$\beta$ processing are associated not only with early-onset autosomal dominant Alzheimer's disease but also with LOAD. Analyses of risk genes and pathways show enrichment for rare variants (P = 1.32 × 10−7), indicating that additional rare variants remain to be identified. We also identify important genetic correlations between LOAD and traits such as family history of dementia and education. [less ▲]

Detailed reference viewed: 158 (10 UL)
Full Text
Peer Reviewed
See detailNeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases
Blauwendraat, Cornelis; Faghri, Faraz; Pihlstrom, Lasse et al

in Neurobiology of Aging (2017)

Genetics has proven to be a powerful approach in neurodegenerative diseases research, resulting in the identification of numerous causal and risk variants. Previously, we introduced the NeuroX Illumina ... [more ▼]

Genetics has proven to be a powerful approach in neurodegenerative diseases research, resulting in the identification of numerous causal and risk variants. Previously, we introduced the NeuroX Illumina genotyping array, a fast and efficient genotyping platform designed for the investigation of genetic variation in neurodegenerative diseases. Here, we present its updated version, named NeuroChip. The NeuroChip is a low cost, custom-designed array containing a tagging variant backbone of about 306,670 variants complemented with a manually curated custom content comprised of 179,467 variants implicated in diverse neurological diseases, including Alzheimer’s disease, Parkinson’s disease, Lewy body dementia, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration and multiple system atrophy. The tagging backbone was chosen because of the low cost and good genome-wide resolution; the custom content can be combined with other backbones, like population or drug development arrays. Using the NeuroChip, we can accurately identify rare variants and impute over 5.3 million common SNPs from the latest release of the Haplotype Reference Consortium. In summary, we describe the design and usage of the NeuroChip array, and show its capability for detecting rare pathogenic variants in numerous neurodegenerative diseases. The NeuroChip has a more comprehensive and improved content, which makes it a reliable, high-throughput, cost-effective screening tool for genetic research and molecular diagnostics in neurodegenerative diseases. [less ▲]

Detailed reference viewed: 292 (67 UL)
Full Text
Peer Reviewed
See detailRare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease
Sims, Rebecca; van der Lee, Sven J.; Naj, Adam C. et al

in Nature Genetics (2017), 49

Detailed reference viewed: 191 (11 UL)
Full Text
Peer Reviewed
See detailGene-wide analysis detects two new susceptibility genes for Alzheimer's disease.
Escott-Price, Valentina; Bellenguez, Celine; Wang, Li-San et al

in PloS one (2014), 9(6), 94661

BACKGROUND: Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study ... [more ▼]

BACKGROUND: Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer's cases and 48,466 controls. PRINCIPAL FINDINGS: In addition to earlier reported genes, we detected genome-wide significant loci on chromosomes 8 (TP53INP1, p = 1.4x10-6) and 14 (IGHV1-67 p = 7.9x10-8) which indexed novel susceptibility loci. SIGNIFICANCE: The additional genes identified in this study, have an array of functions previously implicated in Alzheimer's disease, including aspects of energy metabolism, protein degradation and the immune system and add further weight to these pathways as potential therapeutic targets in Alzheimer's disease. [less ▲]

Detailed reference viewed: 125 (8 UL)
Full Text
Peer Reviewed
See detailMeta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease
Lambert, Jean-Charles; Ibrahim-Verbaas, Carla A.; Harold, Denise et al

in Nature Genetics (2013), 45

Detailed reference viewed: 192 (10 UL)