References of "Wevers, Ron A."
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailPeripheral decarboxylase inhibitors paradoxically induce aromatic L-amino acid decarboxylase
Krüger, Rejko UL; Pavelka, Lukas UL; Mollenhauer, Brit et al

in NPJ Parkinson's Disease (2021)

Peripheral decarboxylase inhibitors (PDIs) prevent the conversion of levodopa to dopamine in the blood by the enzyme aromatic L-amino acid decarboxylase (AADC). Alterations in enzyme activity may ... [more ▼]

Peripheral decarboxylase inhibitors (PDIs) prevent the conversion of levodopa to dopamine in the blood by the enzyme aromatic L-amino acid decarboxylase (AADC). Alterations in enzyme activity may contribute to the required higher dosages of levodopa observed in many patients with Parkinson’s disease. We evaluated the effect of levodopa/PDI use on serum AADC enzyme activity. Serum AADC enzyme activity was evaluated in three independent cohorts of patients with Parkinson’s disease or parkinsonism (n = 301) and compared between patients on levodopa/PDI vs. patients not on this medication. AADC enzyme activity was elevated in 62% of patients on levodopa/PDI treatment, compared to 19% of patients not on levodopa/PDI (median 90 mU/L vs. 50 mU/L, p < 0.001). Patients with elevated AADC activity had longer disease duration and higher doses of levodopa/PDI. These findings may implicate that peripheral AADC induction could underlie a waning effect of levodopa, necessitating dose increases to maintain a sustained therapeutic effect. [less ▲]

Detailed reference viewed: 41 (1 UL)
Peer Reviewed
See detailMutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness.
Wortmann, Saskia B.; Vaz, Frederic M.; Gardeitchik, Thatjana et al

in Nature genetics (2012), 44(7), 797-802

Using exome sequencing, we identify SERAC1 mutations as the cause of MEGDEL syndrome, a recessive disorder of dystonia and deafness with Leigh-like syndrome, impaired oxidative phosphorylation and 3 ... [more ▼]

Using exome sequencing, we identify SERAC1 mutations as the cause of MEGDEL syndrome, a recessive disorder of dystonia and deafness with Leigh-like syndrome, impaired oxidative phosphorylation and 3-methylglutaconic aciduria. We localized SERAC1 at the interface between the mitochondria and the endoplasmic reticulum in the mitochondria-associated membrane fraction that is essential for phospholipid exchange. A phospholipid analysis in patient fibroblasts showed elevated concentrations of phosphatidylglycerol-34:1 (where the species nomenclature denotes the number of carbon atoms in the two acyl chains:number of double bonds in the two acyl groups) and decreased concentrations of phosphatidylglycerol-36:1 species, resulting in an altered cardiolipin subspecies composition. We also detected low concentrations of bis(monoacyl-glycerol)-phosphate, leading to the accumulation of free cholesterol, as shown by abnormal filipin staining. Complementation of patient fibroblasts with wild-type human SERAC1 by lentiviral infection led to a decrease and partial normalization of the mean ratio of phosphatidylglycerol-34:1 to phosphatidylglycerol-36:1. Our data identify SERAC1 as a key player in the phosphatidylglycerol remodeling that is essential for both mitochondrial function and intracellular cholesterol trafficking. [less ▲]

Detailed reference viewed: 309 (1 UL)