References of "Werner, Florian 50003325"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAbsorber composition: A critical parameter for the effectiveness of heat treatments in chalcopyrite solar cells
Sood, Mohit UL; Elanzeery, Hossam UL; Adeleye, Damilola UL et al

in Progress in Photovoltaics (2020)

Post-device heat treatment (HT) in chalcopyrite [Cu(In,Ga)(S,Se)2] solar cells is known to improve the performance of the devices. However, this HT is only beneficial for devices made with absorbers grown ... [more ▼]

Post-device heat treatment (HT) in chalcopyrite [Cu(In,Ga)(S,Se)2] solar cells is known to improve the performance of the devices. However, this HT is only beneficial for devices made with absorbers grown under Cu-poor conditions but not under Cu excess.. We present a systematic study to understand the effects of HT on CuInSe2 and CuInS2 solar cells. The study is performed for CuInSe2 solar cells grown under Cu-rich and Cu-poor chemical potential prepared with both CdS and Zn(O,S) buffer layers. In addition, we also study Cu-rich CuInS2 solar cells prepared with the suitable Zn(O,S) buffer layer. For Cu-poor selenide device low-temperature HT leads to passivation of bulk, whereas in Cu-rich devices no such passivation was observed. The Cu-rich devices are hampered by a large shunt. The HT decreases shunt resistance in Cu-rich selenides, whereas it increases shunt resistance in Cu-rich sulfides.. The origin of these changes in device performance was investigated with capacitance-voltage measurement which shows the considerable decrease in carrier concentration with HT in Cu-poor CuInSe2, and temperature dependent current-voltage measurements show the presence of barrier for minority carriers. Together with numerical simulations, these findings support a highly-doped interfacial p+ layer device model in Cu-rich selenide absorbers and explain the discrepancy between Cu-poor and Curich device performance. Our findings provide insights into how the same treatment can have a completely different effect on the device depending on the composition of the absorber. [less ▲]

Detailed reference viewed: 51 (2 UL)
Full Text
Peer Reviewed
See detailOxidation as Key Mechanism for Efficient Interface Passivation in Cu(In,Ga)Se2 Thin-Film Solar Cells
Werner, Florian UL; Veith-Wolf, Boris; Spindler, Conrad UL et al

in Physical Review Applied (2020)

Detailed reference viewed: 156 (1 UL)
Full Text
Peer Reviewed
See detailHeavy Alkali Treatment of Cu(In,Ga)Se2 Solar Cells: Surface versus Bulk effects
Siebentritt, Susanne UL; Avancini, Enrico; Bär, Marcus et al

in Advanced Energy Materials (2020)

Detailed reference viewed: 42 (2 UL)
Full Text
Peer Reviewed
See detailElectronic defects in Cu(In,Ga)Se2: Towards a comprehensive model
Spindler, Conrad UL; Babbe, Finn UL; Wolter, Max UL et al

in Physical Review Materials (2019), 3

Detailed reference viewed: 165 (14 UL)
Full Text
Peer Reviewed
See detailChallenge in Cu-rich CuInSe2 thin film solar cells: Defect caused by etching
Elanzeery, Hossam UL; Melchiorre, Michele UL; Sood, Mohit UL et al

in Physical Review Materials (2019), 3

Detailed reference viewed: 137 (12 UL)
Full Text
Peer Reviewed
See detailCan we see defects in capacitance measurements of thin‐film solar cells ?
Werner, Florian UL; Babbe, Finn UL; Elanzeery, Hossam UL et al

in Progress in Photovoltaics (2019), 27

Detailed reference viewed: 133 (1 UL)
Full Text
Peer Reviewed
See detailHigh‐performance low bandgap thin film solar cells for tandem applications
Elanzeery, Hossam UL; Babbe, Finn UL; Melchiorre, Michele UL et al

in Progress in Photovoltaics (2018)

Thin film tandem solar cells provide a promising approach to achieve high efficiencies. These tandem cells require at least a bottom low bandgap and an upper high bandgap solar cell. In this contribution ... [more ▼]

Thin film tandem solar cells provide a promising approach to achieve high efficiencies. These tandem cells require at least a bottom low bandgap and an upper high bandgap solar cell. In this contribution, 2 high‐performance Cu(In,Ga)Se2 cells with bandgaps as low as 1.04 and 1.07 eV are presented. These cells have shown certified efficiencies of 15.7% and 16.6% respectively. Measuring these cells under a 780‐nm longpass filter, corresponding to the bandgap of a typical top cell in tandem applications (1.57 eV), they achieved efficiencies of 7.9% and 8.3%. Admittance measurements showed no recombination active deep defects. One additional high‐performance CuInSe2 thin film solar cell with bandgap of 0.95 eV and efficiency of 14.1% is presented. All 3 cells have the potential to be integrated as bottom low bandgap cells in thin film tandem applications achieving efficiencies around 24% stacked with an efficient high bandgap top cell. [less ▲]

Detailed reference viewed: 203 (6 UL)
Full Text
Peer Reviewed
See detailInterdiffusion and Doping Gradients at the Buffer/Absorber Interface in Thin-Film Solar Cells
Werner, Florian UL; Babbe, Finn UL; Burkhart, Jan UL et al

in ACS Applied Materials and Interfaces (2018), 10

Detailed reference viewed: 120 (9 UL)
Full Text
Peer Reviewed
See detailSodium enhances indium-gallium interdiffusion in copper indium gallium diselenide photovoltaic absorbers
Colombara, Diego UL; Werner, Florian UL; Schwarz, Torsten et al

in Nature Communications (2018)

Detailed reference viewed: 375 (13 UL)
Full Text
Peer Reviewed
See detailHall measurements on low-mobility thin films
Werner, Florian UL

in Journal of Applied Physics (2017), 122

Detailed reference viewed: 159 (5 UL)
Full Text
Peer Reviewed
See detailImproved environmental stability of highly conductive nominally undoped ZnO layers suitable for n-type windows in thin film solar cells
Hala, Matej UL; Kato, H.; Algasinger, M. et al

in Solar Energy Materials & Solar Cells (2017), 161

Detailed reference viewed: 309 (13 UL)
Full Text
Peer Reviewed
See detailSpace-charge-limited currents in CIS-based solar cells
Zelenina, Anastasiya UL; Werner, Florian UL; Elanzeery, Hossam UL et al

in Applied Physics Letters (2017), 111

Detailed reference viewed: 155 (4 UL)
Full Text
Peer Reviewed
See detailWhat is the dopant concentration in polycrystalline thin-film Cu(In,Ga)Se2 ?
Werner, Florian UL; Bertram, Tobias UL; Mengozzi, Jonathan et al

in Thin Solid Films (2017), 633

Detailed reference viewed: 177 (8 UL)
Full Text
Peer Reviewed
See detailEnvironmental stability of highly conductive nominally undoped ZnO layers
Hala, Matej UL; Inoue, Yukari; Kato, Iroki et al

in IEEE Photovoltaic Specialists Conference. Conference Record (2016), 978-1-5090-2724

Detailed reference viewed: 152 (6 UL)
Full Text
Peer Reviewed
See detailPhotoluminescence studies in epitaxial CZTSe thin films
Sendler, Jan UL; Thevenin, Maxime UL; Werner, Florian UL et al

in Journal of Applied Physics (2016), 120

Detailed reference viewed: 209 (6 UL)
Full Text
Peer Reviewed
See detailOrdering kesterite improves solar cells:A low temperature post-deposition annealing study
Rey, Germain UL; Weiss, Thomas UL; Sendler, Jan UL et al

in Solar Energy Materials & Solar Cells (2016), 151

Detailed reference viewed: 231 (17 UL)