References of "Voos, Holger 50003283"
     in
Bookmark and Share    
Peer Reviewed
See detailA short Survey on the Cyber Security in Control Systems
Bezzaoucha, Souad UL; Voos, Holger UL

Scientific Conference (2020, July)

In the present survey paper, we give a short, yet exhaustive state-of-the-art about the cyber-security applied to control systems, especially the event-based strategy. Indeed, in the past few years, due ... [more ▼]

In the present survey paper, we give a short, yet exhaustive state-of-the-art about the cyber-security applied to control systems, especially the event-based strategy. Indeed, in the past few years, due to a highest degree of connectivity in modern systems, new related control-specific cyber-physical systems security challengesarise and novel approaches integrating the cyber aspect are developed.Our goal in this paper is then to provide an overview of attack-modeling and security analysis approaches in recent works thatexplore networked control systems subject to cyber-attacks attacks. To this end, we look at the control, estimation, and modeling problems. [less ▲]

Detailed reference viewed: 68 (2 UL)
Full Text
Peer Reviewed
See detailSafer UAV Piloting: A Robust Sense-and-Avoid Solution for Remotely Piloted Quadrotor UAVs in Complex Environments
Wang, Min UL; Voos, Holger UL

in Safer UAV Piloting: A Robust Sense-and-Avoid Solution for Remotely Piloted Quadrotor UAVs in Complex Environments (2019, December)

Current commercial UAVs are to a large extent remotely piloted by amateur human pilots. Due to lack of teleoperation experience or skills, they often drive the UAVs into collision. Therefore, in order to ... [more ▼]

Current commercial UAVs are to a large extent remotely piloted by amateur human pilots. Due to lack of teleoperation experience or skills, they often drive the UAVs into collision. Therefore, in order to ensure safety of the UAV as well as its surroundings, it is necessary for the UAV to boast the capability of detecting emergency situation and acting on its own when facing imminent threat. However, the majority of UAVs currently available in the market are not equipped with such capability. To fill in the gap, in this paper we present a complete sense-and-avoid solution for assisting unskilled pilots in ensuring a safe flight. Particularly, we propose a novel nonlinear vehicle control system which takes into account of sensor characteristics, an emergency evaluation policy and a novel optimization-based avoidance control strategy. The effectiveness of the proposed approach is demonstrated and validated in simulation with multiple moving objects. [less ▲]

Detailed reference viewed: 10 (0 UL)
Full Text
Peer Reviewed
See detailA case study on the impact of masking moving objects on the camera pose regression with CNNs
Cimarelli, Claudio UL; Cazzato, Dario UL; Olivares Mendez, Miguel Angel UL et al

in 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) (2019, November 25)

Robot self-localization is essential for operating autonomously in open environments. When cameras are the main source of information for retrieving the pose, numerous challenges are posed by the presence ... [more ▼]

Robot self-localization is essential for operating autonomously in open environments. When cameras are the main source of information for retrieving the pose, numerous challenges are posed by the presence of dynamic objects, due to occlusion and continuous changes in the appearance. Recent research on global localization methods focused on using a single (or multiple) Convolutional Neural Network (CNN) to estimate the 6 Degrees of Freedom (6-DoF) pose directly from a monocular camera image. In contrast with the classical approaches using engineered feature detector, CNNs are usually more robust to environmental changes in light and to occlusions in outdoor scenarios. This paper contains an attempt to empirically demonstrate the ability of CNNs to ignore dynamic elements, such as pedestrians or cars, through learning. For this purpose, we pre-process a dataset for pose localization with an object segmentation network, masking potentially moving objects. Hence, we compare the pose regression CNN trained and/or tested on the set of masked images and the original one. Experimental results show that the performances of the two training approaches are similar, with a slight reduction of the error when hiding occluding objects from the views. [less ▲]

Detailed reference viewed: 9 (4 UL)
Full Text
Peer Reviewed
See detailSimultaneous State and False-Data Injection Attacks Reconstruction for NonLinear Systems: an LPV Approach
Bezzaoucha, Souad UL; Voos, Holger UL

in Bezzaoucha, Souad (Ed.) International Conference on Automation, Control and Robots (2019, October)

The present contribution addresses simultaneous state and actuator/sensor false-data injection attacks reconstruction for nonlinear systems. The considered actuator/sensor attacks are modeled as time ... [more ▼]

The present contribution addresses simultaneous state and actuator/sensor false-data injection attacks reconstruction for nonlinear systems. The considered actuator/sensor attacks are modeled as time-varying parameters with a multiplicative effect on the actuator input signal and the sensor output signal, respectively. Based on the sector non-linearity approach and the convex polytopic transformation, the nonlinear model is written in a Linear Parameter-Varying (LPV) form, then an observer allowing both state and attack reconstruction is designed by solving an LMI optimization problem. [less ▲]

Detailed reference viewed: 46 (1 UL)
Full Text
Peer Reviewed
See detailOn the Event-based Attack-tolerant Control: A Polytopic Representation
Bezzaoucha, Souad UL; Voos, Holger UL

in Bezzaoucha, Souad (Ed.) International Conference on Automation, Control and Robots (2019, October)

In the present contribution, we present a new event-based control representation. Based on the polytopic approach, more specifically the sector nonlinear transformation, an event-based attack-tolerant ... [more ▼]

In the present contribution, we present a new event-based control representation. Based on the polytopic approach, more specifically the sector nonlinear transformation, an event-based attack-tolerant control, and scheduling co-design strategy are proposed. From the event triggering definition (sample-and-hold strategy), polytopic writing of the event-triggered feedback control is first presented and then incorporated into the system dynamics for analysis. Our goal is to present a unique model that is able to deal with the co-design problem simultaneously and that can be handled by classical control synthesis tools. The novel representation, including data deception and attack tolerant control is formulated as a BMI optimization problem ensuring both stability and some level performance requirements (L2 attenuation of the cyber-attack). [less ▲]

Detailed reference viewed: 40 (0 UL)
Full Text
Peer Reviewed
See detailFaster Visual-Based Localization with Mobile-PoseNet
Cimarelli, Claudio UL; Cazzato, Dario UL; Olivares Mendez, Miguel Angel UL et al

in International Conference on Computer Analysis of Images and Patterns (2019, August 22)

Precise and robust localization is of fundamental importance for robots required to carry out autonomous tasks. Above all, in the case of Unmanned Aerial Vehicles (UAVs), efficiency and reliability are ... [more ▼]

Precise and robust localization is of fundamental importance for robots required to carry out autonomous tasks. Above all, in the case of Unmanned Aerial Vehicles (UAVs), efficiency and reliability are critical aspects in developing solutions for localization due to the limited computational capabilities, payload and power constraints. In this work, we leverage novel research in efficient deep neural architectures for the problem of 6 Degrees of Freedom (6-DoF) pose estimation from single RGB camera images. In particular, we introduce an efficient neural network to jointly regress the position and orientation of the camera with respect to the navigation environment. Experimental results show that the proposed network is capable of retaining similar results with respect to the most popular state of the art methods while being smaller and with lower latency, which are fundamental aspects for real-time robotics applications. [less ▲]

Detailed reference viewed: 11 (0 UL)
Full Text
Peer Reviewed
See detailDeep learning based semantic situation awareness system for multirotor aerial robots using LIDAR
Sanchez Lopez, Jose Luis UL; Sampedro, Carlos; Cazzato, Dario UL et al

in 2019 International Conference on Unmanned Aircraft Systems (ICUAS) (2019, June)

In this work, we present a semantic situation awareness system for multirotor aerial robots, based on 2D LIDAR measurements, targeting the understanding of the environment and assuming to have a precise ... [more ▼]

In this work, we present a semantic situation awareness system for multirotor aerial robots, based on 2D LIDAR measurements, targeting the understanding of the environment and assuming to have a precise robot localization as an input of our algorithm. Our proposed situation awareness system calculates a semantic map of the objects of the environment as a list of circles represented by their radius, and the position and the velocity of their center in world coordinates. Our proposed algorithm includes three main parts. First, the LIDAR measurements are preprocessed and an object segmentation clusters the candidate objects present in the environment. Secondly, a Convolutional Neural Network (CNN) that has been designed and trained using an artificially generated dataset, computes the radius and the position of the center of individual circles in sensor coordinates. Finally, an indirect-EKF provides the estimate of the semantic map in world coordinates, including the velocity of the center of the circles in world coordinates.We have quantitative and qualitative evaluated the performance of our proposed situation awareness system by means of Software-In-The-Loop simulations using VRep with one and multiple static and moving cylindrical objects in the scene, obtaining results that support our proposed algorithm. In addition, we have demonstrated that our proposed algorithm is capable of handling real environments thanks to real laboratory experiments with non-cylindrical static (i.e. a barrel) and moving (i.e. a person) objects. [less ▲]

Detailed reference viewed: 20 (0 UL)
Full Text
Peer Reviewed
See detailAn Effective Hybrid Imperialist Competitive Algorithm and Tabu Search for an Extended Flexible Job Shop Scheduling Problem
Tessaro Lunardi, Willian UL; Voos, Holger UL; Cherri, Luiz Henrique

in 34th ACM/SIGAPP Symposium On Applied Computing, Limassol, Cyprus April 8-12, 2019 (2019, April 08)

An extended version of the flexible job shop problem is tackled in this work. The investigated extension of the classical flexible job shop problem allows the precedences between the operations to be ... [more ▼]

An extended version of the flexible job shop problem is tackled in this work. The investigated extension of the classical flexible job shop problem allows the precedences between the operations to be given by an arbitrary directed acyclic graph instead of a linear order. The problem consists of designating the operations to the machines and sequencing them in compliance with the supplied precedences. The goal in the present work is the minimization of the makespan. In order to produce reasonable outcomes in acceptable time, a hybrid imperialist competitive algorithm and tabu search is proposed to solve the problem. Numerical experiments assess the efficiency of the proposed method and compare it with well-known scheduling algorithms. [less ▲]

Detailed reference viewed: 188 (30 UL)
Full Text
Peer Reviewed
See detailStability Analysis of Power Networks under Cyber-Physical Attacks: an LPV-Descriptor Approach
Bezzaoucha, Souad UL; Voos, Holger UL

in Bezzaoucha, Souad (Ed.) International Conference on Control, Decision and Information Technologies (2019, April)

This paper proposes a unified and advanced framework for the modeling, stability study and stabilization of a Power Networks subject to an omniscient adversary (i.e. cyber-attack). From the system model ... [more ▼]

This paper proposes a unified and advanced framework for the modeling, stability study and stabilization of a Power Networks subject to an omniscient adversary (i.e. cyber-attack). From the system model developed in [24], based on the well-known sector non-linearity approach and the convex polytopic transformation, the attacked system (descriptor model) is re-written in a more convenient form (Linear Parameter Varying-LPV) with unmeasurable premise variables. The so-called Lyapunov-based methods are applied in order to study the stability and security problems despite the presence of cyber-attacks. The conditions will be given in terms of Linear- Bilinear Matrix Inequality LMI- BMI constraints. [less ▲]

Detailed reference viewed: 89 (0 UL)
Full Text
Peer Reviewed
See detailEvaluation of End-To-End Learning for Autonomous Driving: The Good, the Bad and the Ugly
Varisteas, Georgios UL; Frank, Raphaël UL; Sajadi Alamdari, Seyed Amin UL et al

in 2nd International Conference on Intelligent Autonomous Systems, Singapore, Feb. 28 to Mar. 2, 2019 (2019, March 01)

Detailed reference viewed: 200 (44 UL)
Full Text
Peer Reviewed
See detailReal-Time Human Head Imitation for Humanoid Robots
Cazzato, Dario UL; Cimarelli, Claudio UL; Sanchez Lopez, Jose Luis UL et al

in Proceedings of the 2019 3rd International Conference on Artificial Intelligence and Virtual Reality (2019)

Detailed reference viewed: 7 (2 UL)
Full Text
Peer Reviewed
See detailA non-invasive tool for attention-deficit disorder analysis based on gaze tracks
Cazzato, Dario UL; Castro, Silvia M.; Agamennoni, Osvaldo et al

in Proceedings of the 2nd International Conference on Applications of Intelligent Systems (2019)

Detailed reference viewed: 9 (1 UL)
Full Text
Peer Reviewed
See detailVision-Based Aircraft Pose Estimation for UAVs Autonomous Inspection without Fiducial Markers
Cazzato, Dario UL; Olivares Mendez, Miguel Angel UL; Sanchez Lopez, Jose Luis UL et al

in IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society (2019)

Detailed reference viewed: 8 (3 UL)
Full Text
Peer Reviewed
See detailUnderstanding and Modelling Human Attention for Soft Biometrics Purposes
Cazzato, Dario UL; Leo, Marco; Carcagnì, Pierluigi et al

in AIVR 2019: Proceedings of the 2019 3rd International Conference on Artificial Intelligence and Virtual Reality (2019)

Detailed reference viewed: 42 (2 UL)
Full Text
Peer Reviewed
See detailVideo Indexing Using Face Appearance and Shot Transition Detection
Cazzato, Dario UL; Leo, Marco; Carcagni, Pierluigi et al

in Proceedings of the IEEE International Conference on Computer Vision Workshops (2019)

Detailed reference viewed: 9 (0 UL)
Full Text
Peer Reviewed
See detailA parallel multi-population biased random-key genetic algorithm for electric distribution network reconfiguration
de Faria Junior, Haroldo UL; Tessaro Lunardi, Willian UL; Voos, Holger UL

in The Genetic and Evolutionary Computation Conference - GECCO'19 (2019)

This work presents a multi-population biased random-key genetic algorithm (BRKGA) for the electric distribution network reconfiguration problem (DNR). DNR belongs to the class of network design problems ... [more ▼]

This work presents a multi-population biased random-key genetic algorithm (BRKGA) for the electric distribution network reconfiguration problem (DNR). DNR belongs to the class of network design problems which include transportation problems, computer network restoration and telecommunication network design and can be used for loss minimization and load balancing, being an important tool for distribution network operators. A BRKGA is a class of genetic algorithms in which solutions are encoded as vectors of random keys, i.e. randomly generated real numbers from a uniform distribution in the interval [0, 1). A vector of random keys is translated into a solution of the optimization problem by a decoder. The decoder used generates only feasible solutions by using an efficient codification based upon the fundamentals of graph theory, restricting the search space. The parallelization is based on the single program multiple data paradigm and is executed on the cores of a multi-core processor. Time to target plots, which characterize the running times of stochastic algorithms for combinatorial optimization, are used to compare the performance of the serial and parallel algorithms. The proposed method has been tested on two standard distribution systems and the results show the effectiveness and performance of the parallel algorithm. [less ▲]

Detailed reference viewed: 66 (14 UL)
Full Text
Peer Reviewed
See detailNew Trends in Observer-based Control: An Introduction to Design Approaches and Engineering Applications, Chapter 13: Observer-based Event-triggered Attack-Tolerant Control Design for Cyber-physical Systems
Bezzaoucha, Souad UL; Voos, Holger UL

in New Trends in Observer-based Control: An Introduction to Design Approaches and Engineering Applications, Chapter 13: Observer-based Event-triggered Attack-Tolerant Control Design for Cyber-physical Systems (2019)

In the following chapter, we first introduce an appropriate model associating paradigms from control theory and computer science (system subject to both physical attacks and sensors/actuators attacks via ... [more ▼]

In the following chapter, we first introduce an appropriate model associating paradigms from control theory and computer science (system subject to both physical attacks and sensors/actuators attacks via the connected network, i.e., false-data injection attacks on actuators/sensors). Then, inspired by a combination between the classical fault-tolerant control (FTC) approach and the event-triggered control, an observer-based attack-tolerant control solution is proposed. The aim of our work is, first, to establish theoretical foundations for the development of model-based monitoring and attack-tolerant control for reliable deployment of a large number of advanced Cyber-Physical Systems. [less ▲]

Detailed reference viewed: 89 (8 UL)
Full Text
Peer Reviewed
See detailNonlinear Model Predictive Control for Ecological Driver Assistance Systems in Electric Vehicles
Sajadi Alamdari, Seyed Amin UL; Voos, Holger UL; Darouach, Mohamed

in Robotics and Autonomous Systems (2018)

Detailed reference viewed: 92 (12 UL)
Full Text
Peer Reviewed
See detailEcological Advanced Driver Assistance System for Optimal Energy Management in Electric Vehicles
Sajadi Alamdari, Seyed Amin UL; Voos, Holger UL; Darouach, Mohamed

in IEEE Intelligent Transportation Systems Magazine (2018)

Battery Electric Vehicles have a high potential in modern transportation, however, they are facing limited cruising range. The driving style, the road geometries including slopes, curves, the static and ... [more ▼]

Battery Electric Vehicles have a high potential in modern transportation, however, they are facing limited cruising range. The driving style, the road geometries including slopes, curves, the static and dynamic traffic conditions such as speed limits and preceding vehicles have their share of energy consumption in the host electric vehicle. Optimal energy management based on a semi-autonomous ecological advanced driver assistance system can improve the longitudinal velocity regulation in a safe and energy-efficient driving strategy. The main contribution of this paper is the design of a real-time risk-sensitive nonlinear model predictive controller to plan the online cost-effective cruising velocity in a stochastic traffic environment. The basic idea is to measure the relevant states of the electric vehicle at runtime, and account for the road slopes, the upcoming curves, and the speed limit zones, as well as uncertainty in the preceding vehicle behavior to determine the energy-efficient velocity profile. Closed-loop Entropic Value-at-Risk as a coherent risk measure is introduced to quantify the risk involved in the system constraints violation. The obtained simulation and field experimental results demonstrate the effectiveness of the proposed method for a semi-autonomous electric vehicle in terms of safe and energy-efficient states regulation and constraints satisfaction. [less ▲]

Detailed reference viewed: 135 (7 UL)
Full Text
Peer Reviewed
See detailVulnerability Analysis of Cyber Physical Systems under False-Data injection and disturbance attacks
Gerard, Benjamin; Bezzaoucha, Souad UL; Voos, Holger UL et al

in Vulnerability Analysis of Cyber Physical Systems under False-Data injection and disturbance attacks (2018, September)

In the present paper, the problem of attacks on cyber-physical systems via networked control system (NCS) subject to unmeasured disturbances is considered. The geometric approach is used to evaluate the ... [more ▼]

In the present paper, the problem of attacks on cyber-physical systems via networked control system (NCS) subject to unmeasured disturbances is considered. The geometric approach is used to evaluate the security and vulnerability level of the controlled system. The presented work deals with the so-called false data injection attacks and shows how imperfectly known disturbances can be used to perform undetectable, or at least stealthy, attacks that can make the NCS vulnerable to attacks from malicious outsiders. A numerical example is given to illustrate the approach. [less ▲]

Detailed reference viewed: 79 (7 UL)