References of "Vollmer, Jürgen"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailFluctuating currents in stochastic thermodynamics. I. Gauge invariance of asymptotic statistics
Wachtel, Artur UL; Vollmer, Jürgen; Altaner, Bernhard

in PHYSICAL REVIEW E (2015), 92(4), 042132

Stochastic thermodynamics uses Markovian jump processes to model random transitions between observable mesoscopic states. Physical currents are obtained from antisymmetric jump observables defined on the ... [more ▼]

Stochastic thermodynamics uses Markovian jump processes to model random transitions between observable mesoscopic states. Physical currents are obtained from antisymmetric jump observables defined on the edges of the graph representing the network of states. The asymptotic statistics of such currents are characterized by scaled cumulants. In the present work, we use the algebraic and topological structure of Markovian models to prove a gauge invariance of the scaled cumulant-generating function. Exploiting this invariance yields an efficient algorithm for practical calculations of asymptotic averages and correlation integrals. We discuss how our approach generalizes the Schnakenberg decomposition of the average entropy-production rate, and how it unifies previous work. The application of our results to concrete models is presented in an accompanying publication. [less ▲]

Detailed reference viewed: 82 (0 UL)
Full Text
Peer Reviewed
See detailFluctuating currents in stochastic thermodynamics. II. Energy conversion and nonequilibrium response in kinesin models
Altaner, Bernhard; Wachtel, Artur UL; Vollmer, Jürgen

in PHYSICAL REVIEW E (2015), 92(4), 042133

Unlike macroscopic engines, the molecular machinery of living cells is strongly affected by fluctuations. Stochastic thermodynamics uses Markovian jump processes to model the random transitions between ... [more ▼]

Unlike macroscopic engines, the molecular machinery of living cells is strongly affected by fluctuations. Stochastic thermodynamics uses Markovian jump processes to model the random transitions between the chemical and configurational states of these biological macromolecules. A recently developed theoretical framework [A. Wachtel, J. Vollmer, and B. Altaner, Phys. Rev. E 92, 042132 (2015)] provides a simple algorithm for the determination of macroscopic currents and correlation integrals of arbitrary fluctuating currents. Here we use it to discuss energy conversion and nonequilibrium response in different models for the molecular motor kinesin. Methodologically, our results demonstrate the effectiveness of the algorithm in dealing with parameter-dependent stochastic models. For the concrete biophysical problem our results reveal two interesting features in experimentally accessible parameter regions: the validity of a nonequilibrium Green-Kubo relation at mechanical stalling as well as a negative differential mobility for superstalling forces. [less ▲]

Detailed reference viewed: 94 (2 UL)