References of "Vitello, Piergiorgio 50034613"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA Classification Approach Using Machine Learning for Predicting Traffic Flows in Areas with Missing Sensors
Fazio, Martina; Vitello, Piergiorgio UL; Pineda Jaramillo, Juan Diego UL et al

in Transportation Research Board 101st Annual Meeting (2022)

Detailed reference viewed: 48 (0 UL)
Full Text
Peer Reviewed
See detailThe Impact of SARS-COVID-19 Outbreak on European Cities Urban Mobility
Vitello, Piergiorgio UL; Connors, Richard UL; Viti, Francesco UL

in Frontiers in Future Transportation (2021)

Detailed reference viewed: 46 (6 UL)
Full Text
Peer Reviewed
See detailMobility-Driven and Energy-Efficient Deployment of Edge Data Centers in Urban Environments
Vitello, Piergiorgio UL; Capponi, Andrea UL; Fiandrino, Claudio UL et al

in IEEE Transactions on Sustainable Computing (2021)

Multi-access Edge Computing (MEC) brings storage and computational capabilities at the edge of the network into so-called Edge Data Centers (EDCs) to better support low-latency applications. In this paper ... [more ▼]

Multi-access Edge Computing (MEC) brings storage and computational capabilities at the edge of the network into so-called Edge Data Centers (EDCs) to better support low-latency applications. In this paper, we tackle the problem of EDC deployment in urban environments. Previous research on mobile phone data has exposed a strong correlation between the demand for mobile communications and the urban tissue. For example, joint analysis of mobile data and vehicle traffic can be extrapolated to estimate demand for transportation and human activities, thereby inferring the land use of the area where such activities take place. Our work takes into account the mobility of citizens and their spatial patterns to estimate the optimal placement of MEC EDCs in urban environments, in order to minimize outages while guaranteeing energy-efficiency. This is achieved by modeling both the energy consumption attributed to network components (e.g., base stations) and computing components (e.g., servers). We propose and compare three heuristics and show that mobility-aware deployments achieve superior performance. The results are obtained with a custom-designed simulator able to operate over large-scale realistic urban environments. [less ▲]

Detailed reference viewed: 81 (5 UL)
Full Text
Peer Reviewed
See detailThe CORONA Business in Modern Cities
Vitello, Piergiorgio UL; Capponi, Andrea UL; Klopp, Pol et al

Poster (2020, November)

As a response to the global outbreak of the SARS-COVID-19 pandemic, authorities have enforced a number of measures including social distancing, travel restrictions that lead to the “temporary” closure of ... [more ▼]

As a response to the global outbreak of the SARS-COVID-19 pandemic, authorities have enforced a number of measures including social distancing, travel restrictions that lead to the “temporary” closure of activities stemming from public services, schools, industry to local businesses. In this poster we draw the attention to the impact of such measures on urban environments and activities. For this, we use crowdsensed information available from datasets like Google Popular Times and Apple Maps to shed light on the changes undergone during the outbreak and the recovery [less ▲]

Detailed reference viewed: 196 (8 UL)
Full Text
Peer Reviewed
See detailInferring Urban Mobility and Habits from User Location History
Cantelmo, Guido; Vitello, Piergiorgio UL; Toader, Bogdan et al

in Transportation Research Procedia (2020, January), 47

Detailed reference viewed: 92 (11 UL)
Full Text
Peer Reviewed
See detailInferring Urban Mobility and Habits from User Location History
Cantelmo, Guido; Vitello, Piergiorgio UL; Toader, Bogdan et al

in Transportation Research Procedia (2020, January), 47

Detailed reference viewed: 92 (11 UL)
Full Text
Peer Reviewed
See detailThe Impact of Human Mobility on Edge Data Center Deployment in Urban Environments
Vitello, Piergiorgio UL; Capponi, Andrea UL; Fiandrino, Claudio UL et al

in IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 2019 (2019, December)

Multi-access Edge Computing (MEC) brings storage and computational capabilities at the edge of the network into so-called Edge Data Centers (EDCs) to better low-latency applications. To this end ... [more ▼]

Multi-access Edge Computing (MEC) brings storage and computational capabilities at the edge of the network into so-called Edge Data Centers (EDCs) to better low-latency applications. To this end, effective placement of EDCs in urban environments is key for proper load balance and to minimize outages. In this paper, we specifically tackle this problem. To fully understand how the computational demand of EDCs varies, it is fundamental to analyze the complex dynamics of cities. Our work takes into account the mobility of citizens and their spatial patterns to estimate the optimal placement of MEC EDCs in urban environments in order to minimize outages. To this end, we propose and compare two heuristics. In particular, we present the mobility-aware deployment algorithm (MDA) that outperforms approaches that do not consider citizens mobility. Simulations are conducted in Luxembourg City by extending the CrowdSenSim simulator and show that efficient EDCs placement significantly reduces outages. [less ▲]

Detailed reference viewed: 146 (16 UL)
Full Text
Peer Reviewed
See detailCrowdsensed Data Learning-Driven Prediction of Local Businesses Attractiveness in Smart Cities
Capponi, Andrea UL; Vitello, Piergiorgio UL; Fiandrino, Claudio UL et al

in IEEE Symposium on Computers and Communications (ISCC), Barcelona, Spain, 2019 (2019, July)

Urban planning typically relies on experience-based solutions and traditional methodologies to face urbanization issues and investigate the complex dynamics of cities. Recently, novel data-driven ... [more ▼]

Urban planning typically relies on experience-based solutions and traditional methodologies to face urbanization issues and investigate the complex dynamics of cities. Recently, novel data-driven approaches in urban computing have emerged for researchers and companies. They aim to address historical urbanization issues by exploiting sensing data gathered by mobile devices under the so-called mobile crowdsensing (MCS) paradigm. This work shows how to exploit sensing data to improve traditionally experience-based approaches for urban decisions. In particular, we apply widely known Machine Learning (ML) techniques to achieve highly accurate results in predicting categories of local businesses (LBs) (e.g., bars, restaurants), and their attractiveness in terms of classes of temporal demands (e.g., nightlife, business hours). The performance evaluation is conducted in Luxembourg city and the city of Munich with publicly available crowdsensed datasets. The results highlight that our approach does not only achieve high accuracy, but it also unveils important hidden features of the interaction of citizens and LBs. [less ▲]

Detailed reference viewed: 349 (28 UL)
Full Text
Peer Reviewed
See detailCollaborative Data Delivery for Smart City-oriented Mobile Crowdsensing Systems
Vitello, Piergiorgio UL; Capponi, Andrea UL; Fiandrino, Claudio UL et al

in IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, UAE, 2018 (2018, December)

The huge increase of population living in cities calls for a sustainable urban development. Mobile crowdsensing (MCS) leverages participation of active citizens to improve performance of existing sensing ... [more ▼]

The huge increase of population living in cities calls for a sustainable urban development. Mobile crowdsensing (MCS) leverages participation of active citizens to improve performance of existing sensing infrastructures. In typical MCS systems, sensing tasks are allocated and reported on individual-basis. In this paper, we investigate on collaboration among users for data delivery as it brings a number of benefits for both users and sensing campaign organizers and leads to better coordination and use of resources. By taking advantage from proximity, users can employ device-to-device (D2D) communications like Wi-Fi Direct that are more energy efficient than 3G/4G technology. In such scenario, once a group is set, one of its member is elected to be the owner and perform data forwarding to the collector. The efficiency of forming groups and electing suitable owners defines the efficiency of the whole collaborative-based system. This paper proposes three policies optimized for MCS that are compliant with current Android implementation of Wi-Fi Direct. The evaluation results, obtained using CrowdSenSim simulator, demonstrate that collaborative-based approaches outperform significantly individual-based approaches. [less ▲]

Detailed reference viewed: 270 (22 UL)
Full Text
Peer Reviewed
See detailHigh-Precision Design of Pedestrian Mobility for Smart City Simulators
Vitello, Piergiorgio UL; Capponi, Andrea UL; Fiandrino, Claudio UL et al

in IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 2018 (2018, May)

The unprecedented growth of the population living in urban environments calls for a rational and sustainable urban development. Smart cities can fill this gap by providing the citizens with high-quality ... [more ▼]

The unprecedented growth of the population living in urban environments calls for a rational and sustainable urban development. Smart cities can fill this gap by providing the citizens with high-quality services through efficient use of Information and Communication Technology (ICT). To this end, active citizen participation with mobile crowdsensing (MCS) techniques is a becoming common practice. As MCS systems require wide participation, the development of large scale real testbeds is often not feasible and simulations are the only alternative solution. Modeling the urban environment with high precision is a key ingredient to obtain effective results. However, currently existing tools like OpenStreetMap (OSM) fail to provide sufficient levels of details. In this paper, we apply a procedure to augment the precision (AOP) of the graph describing the street network provided by OSM. Additionally, we compare different mobility models that are synthetic and based on a realistic dataset originated from a well known MCS data collection campaign (ParticipAct). For the dataset, we propose two arrival models that determine the users’ arrivals and match the experimental contact distribution. Finally, we assess the scalability of AOP for different cities, verify popular metrics for human mobility and the precision of different arrival models. [less ▲]

Detailed reference viewed: 236 (11 UL)