References of "Vigneri, Valentino"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailNumerical study on design rules for minimum degree of shear connection in propped steel-concrete composite beams
Vigneri, Valentino; Odenbreit, Christoph UL; Romero, Alfredo UL

in Engineering Structures (2021), 241

This manuscript presents a numerical study on simply supported propped composite beams with ductile shear connectors subjected to uniformly distributed load. The aim is to assess the performance of the ... [more ▼]

This manuscript presents a numerical study on simply supported propped composite beams with ductile shear connectors subjected to uniformly distributed load. The aim is to assess the performance of the revised rules for the minimum degree of shear connection (CEN/TC250/SC4.T3) with respect to the occurring slip. First, a non-linear 3D finite element model was developed through the software ABAQUS 2017 and validated against analytical values of the elastic stiffness and plastic bending resistance. Then, 91 configurations were analysed for different degrees of shear connection η=0.2,0.4…1.0. The span ranges from 6 to 25 m while the geometrical and mechanical properties varied within their typical field of applicability. According to both current and revised rules, 16 configurations with relatively deep beam and “weak” concrete slab exhibited allowable slip values smax significantly higher than 6 m. Therefore, the authors proposed a reduction of the maximum degree of utilization to these special cases. If the proposed reduction is included in the revised rules, none of the considered cases exhibit a slip smax higher than 8 mm while few cases have smax between 6 and 8 mm. For the ease of use, a design proposal is reformulated as a conditional reduction of the plastic bending resistance of the composite section. [less ▲]

Detailed reference viewed: 115 (6 UL)
Full Text
See detailTechnical Report LA19.E Rev. B. Headed studs in profiled steel sheeting transverse to the beam. Investigations on design resistance of headed stud shear connectors on the basis of the Final Draft of SC4.PT3 (April 2018)
Odenbreit, Christoph UL; Vigneri, Valentino

Report (2021)

The unsafety of current design rules for novel types of open-trough deck geometries for the resistance of headed studs in profiled steel sheeting is well known [1] and it was the main reason behind the ... [more ▼]

The unsafety of current design rules for novel types of open-trough deck geometries for the resistance of headed studs in profiled steel sheeting is well known [1] and it was the main reason behind the nomination of CEN/TC250/SC4- Task SC4.T3: “Revised rules for shear connection in the presence of modern forms of profiled sheeting”. During the RFCS research project “DISCCO” (RFCS-CT-2012-00030) [1], a mechanical model was developed on the basis of a large literature study and previous studies [2, 3, 4, 5, 6] while the corresponding design equations were presented by CEN/TC250/SC4.PT3 and further enhanced during the Research Project “ShearCON” of University of Luxembourg. In order to let the current rules of EN 1994-1-1 6.6 (Eq.(2) and (3)) as unchanged as possible, the limits of its suitable field of applicability (Database B1) was investigated thoroughly by means of the statistical procedure of EN 1990 D.8 [7]. The newly proposed equations (Eq. (7) and (8)) apply only to the cases outside these limits (Database B2). In this way, the proposed solution is able to restore the level of safety to its initial value, so that the partial safety factor for the shear connection ϒV=1.25 is adequate. Conversely, the current situation (without including the new design equations) would need a much higher partial safety factor as shown below. [less ▲]

Detailed reference viewed: 58 (5 UL)