![]() ; May, Patrick ![]() ![]() in Molecular Psychiatry (2020), 25(3), 629-639 Common variants of about 20 genes contributing to AD risk have so far been identified through genome-wide association studies (GWAS). However, there is still a large proportion of heritability that might ... [more ▼] Common variants of about 20 genes contributing to AD risk have so far been identified through genome-wide association studies (GWAS). However, there is still a large proportion of heritability that might be explained by rare but functionally important variants. One of the so far identified genes with rare AD causing variants is ADAM10. Using whole-genome sequencing we now identified a single rare nonsynonymous variant (SNV) rs142946965 [p.R215I] in ADAM17 co-segregating with an autosomal-dominant pattern of late-onset AD in one family. Subsequent genotyping and analysis of available whole-exome sequencing data of additional case/control samples from Germany, the UK and the USA identified five variant carriers among AD patients only. The mutation inhibits pro-protein cleavage and the formation of the active enzyme, thus leading to loss-of-function of ADAM17 α-secretase. Further, we identified a strong negative correlation between ADAM17 and APP gene expression in human brain and present in vitro evidence that ADAM17 negatively controls the expression of APP. As a consequence, p.R215I mutation of ADAM17 leads to elevated Aß formation in vitro. Together our data supports a causative association of the identified ADAM17 variant in the pathogenesis of AD. [less ▲] Detailed reference viewed: 325 (31 UL)![]() ; ; et al in Nature Genetics (2019), 51(3), 414 Risk for late-onset Alzheimer's disease (LOAD), the most prevalent dementia, is partially driven by genetics. To identify LOAD risk loci, we performed a large genome-wide association meta-analysis of ... [more ▼] Risk for late-onset Alzheimer's disease (LOAD), the most prevalent dementia, is partially driven by genetics. To identify LOAD risk loci, we performed a large genome-wide association meta-analysis of clinically diagnosed LOAD (94,437 individuals). We confirm 20 previous LOAD risk loci and identify five new genome-wide loci (IQCK, ACE, ADAM10, ADAMTS1, and WWOX), two of which (ADAM10, ACE) were identified in a recent genome-wide association (GWAS)-by-familial-proxy of Alzheimer's or dementia. Fine-mapping of the human leukocyte antigen (HLA) region confirms the neurological and immune-mediated disease haplotype HLA-DR15 as a risk factor for LOAD. Pathway analysis implicates immunity, lipid metabolism, tau binding proteins, and amyloid precursor protein (APP) metabolism, showing that genetic variants affecting APP and A$\beta$ processing are associated not only with early-onset autosomal dominant Alzheimer's disease but also with LOAD. Analyses of risk genes and pathways show enrichment for rare variants (P = 1.32 × 10−7), indicating that additional rare variants remain to be identified. We also identify important genetic correlations between LOAD and traits such as family history of dementia and education. [less ▲] Detailed reference viewed: 197 (10 UL)![]() ; ; et al in Nature Genetics (2017), 49 Detailed reference viewed: 245 (11 UL)![]() ; ; et al in PloS one (2014), 9(6), 94661 BACKGROUND: Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study ... [more ▼] BACKGROUND: Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer's cases and 48,466 controls. PRINCIPAL FINDINGS: In addition to earlier reported genes, we detected genome-wide significant loci on chromosomes 8 (TP53INP1, p = 1.4x10-6) and 14 (IGHV1-67 p = 7.9x10-8) which indexed novel susceptibility loci. SIGNIFICANCE: The additional genes identified in this study, have an array of functions previously implicated in Alzheimer's disease, including aspects of energy metabolism, protein degradation and the immune system and add further weight to these pathways as potential therapeutic targets in Alzheimer's disease. [less ▲] Detailed reference viewed: 145 (8 UL)![]() ; ; et al in Nature Genetics (2013), 45 Detailed reference viewed: 253 (10 UL) |
||