![]() Lochy, Aliette ![]() in Neuropsychologia (2015), 66 Despite decades of research on reading, including the relatively recent contributions of neuroimaging and electrophysiology, identifying selective representations of whole visual words (in contrast to ... [more ▼] Despite decades of research on reading, including the relatively recent contributions of neuroimaging and electrophysiology, identifying selective representations of whole visual words (in contrast to pseudowords) in the human brain remains challenging, in particular without an explicit linguistic task. Here we measured discrimination responses to written words by means of electroencephalography (EEG) during fast periodic visual stimulation. Sequences of pseudofonts, nonwords, or pseudowords were presented through sinusoidal contrast modulation at a periodic 10 Hz frequency rate (F), in which words were interspersed at regular intervals of every fifth item (i.e., F/5, 2 Hz). Participants monitored a central cross color change and had no linguistic task to perform. Within only 3 min of stimulation, a robust discrimination response for words at 2 Hz (and its harmonics, i.e., 4 and 6 Hz) was observed in all conditions, located predominantly over the left occipito-temporal cortex. The magnitude of the response was largest for words embedded in pseudofonts, and larger in nonwords than in pseudowords, showing that list context effects classically reported in behavioral lexical decision tasks are due to visual discrimination rather than decisional processes. Remarkably, the oddball response was significant even for the critical words/pseudowords discrimination condition in every individual participant. A second experiment replicated this words/pseudowords discrimination, and showed that this effect is not accounted for by a higher bigram frequency of words than pseudowords. Without any explicit task, our results highlight the potential of an EEG fast periodic visual stimulation approach for understanding the representation of written language. Its development in the scientific community might be valuable to rapidly and objectively measure sensitivity to word processing in different human populations, including neuropsychological patients with dyslexia and other reading difficulties. [less ▲] Detailed reference viewed: 58 (1 UL)![]() ![]() Di Luca, Samuel ![]() ![]() Poster (2014, April 04) Sooner or later human beings represent or see numerosities represented by hands. This handling of small numerosities by prototypical finger configurations has been the focus of many experiments ... [more ▼] Sooner or later human beings represent or see numerosities represented by hands. This handling of small numerosities by prototypical finger configurations has been the focus of many experiments investigating the possibility that semantic representations of numbers are motor-rooted. Canonical finger configurations (i.e. the culturally determined way to express numerosity with fingers) are for instance recognized faster (Di Luca et al., 2006), and give direct access to number semantics (Di Luca et Pesenti, 2008). It is also known that these effects are not due to a visual facilitation of canonical configurations (Di Luca et Pesenti, 2010), but to a different inner representation (Di Luca, Lefèvre and Pesenti, 2010). However, a precise characterization of their visual processing is currently lacking. We addressed this shortcoming by using an eye-tracking method based on gaze-contingent stimulus presentation (Van Belle et al., 2010). While participants named numerosities expressed by canonical and non-canonical finger numeral configurations presented in upright or inverted orientations, we selectively impaired analytical or holistic visual perception by respectively masking (in real time) peripheral or focal vision. Our data confirm the results found in literature: canonical configurations are processed faster than non-canonical ones, upright configurations are processed faster than inverted ones and holistic perception is faster than analytical one. Most importantly, we also demonstrate that canonical configurations are impaired by the peripheral mask (i.e. holistic vision hindered) whereas non-canonical ones are impaired by the foveal mask (i.e. analytical vision hindered). These results confirm that the practice of finger numeral configurations modifies not only the way human beings process and represent numerosities but especially the way to visually perceive them. [less ▲] Detailed reference viewed: 92 (5 UL)![]() ![]() Di Luca, Samuel ![]() ![]() Poster (2014) Sooner or later human beings represent or see numerosities represented by hands. This handling of small numerosities by prototypical finger configurations has been the focus of many experiments ... [more ▼] Sooner or later human beings represent or see numerosities represented by hands. This handling of small numerosities by prototypical finger configurations has been the focus of many experiments investigating the possibility that semantic representations of numbers are motor-rooted. Canonical finger configurations (i.e. the culturally determined way to express numerosity with fingers) are for instance recognized faster (Di Luca et al., 2006), and give direct access to number semantics (Di Luca et Pesenti, 2008). It is also known that these effects are not due to a visual facilitation of canonical configurations (Di Luca et Pesenti, 2010), but to a different inner representation (Di Luca, Lefèvre and Pesenti, 2010). However, a precise characterization of their visual processing is currently lacking. We addressed this shortcoming by using an eye-tracking method based on gaze-contingent stimulus presentation (Van Belle et al., 2010). While participants named numerosities expressed by canonical and non-canonical finger numeral configurations presented in upright or inverted orientations, we selectively impaired analytical or holistic visual perception by respectively masking (in real time) peripheral or focal vision. Our data confirm the results found in literature: canonical configurations are processed faster than non-canonical ones, upright configurations are processed faster than inverted ones and holistic perception is faster than analytical one. Most importantly, we also demonstrate that canonical configurations are impaired by the peripheral mask (i.e. holistic vision hindered) whereas non-canonical ones are impaired by the foveal mask (i.e. analytical vision hindered). These results confirm that the practice of finger numeral configurations modifies not only the way human beings process and represent numerosities but especially the way to visually perceive them. [less ▲] Detailed reference viewed: 99 (5 UL) |
||