References of "Valente, Enza Maria"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe Interaction between HLA-DRB1 and Smoking in Parkinson's Disease Revisited
Domenighetti, Cloé; Douillard, Venceslas; Sugier, Pierre-Emmanuel et al

in Movement Disorders (2022)

Abstract Background Two studies that examined the interaction between HLA-DRB1 and smoking in Parkinson's disease (PD) yielded findings in opposite directions. Objective To perform a large-scale ... [more ▼]

Abstract Background Two studies that examined the interaction between HLA-DRB1 and smoking in Parkinson's disease (PD) yielded findings in opposite directions. Objective To perform a large-scale independent replication of the HLA-DRB1 × smoking interaction. Methods We genotyped 182 single nucleotide polymorphism (SNPs) associated with smoking initiation in 12 424 cases and 9480 controls to perform a Mendelian randomization (MR) analysis in strata defined by HLA-DRB1. Results At the amino acid level, a valine at position 11 (V11) in HLA-DRB1 displayed the strongest association with PD. MR showed an inverse association between genetically predicted smoking initiation and PD only in absence of V11 (odds ratio, 0.74, 95 confidence interval, 0.59–0.93, PInteraction = 0.028). In silico predictions of the influence of V11 and smoking-induced modifications of α-synuclein on binding affinity showed findings consistent with this interaction pattern. Conclusions Despite being one of the most robust findings in PD research, the mechanisms underlying the inverse association between smoking and PD remain unknown. Our findings may help better understand this association. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society [less ▲]

Detailed reference viewed: 66 (0 UL)
Full Text
Peer Reviewed
See detailGenome-wide Association and Meta-analysis of Age-at-Onset in Parkinson Disease: Evidence From COURAGE-PD Consortium 10.1212/WNL.0000000000200699
Grover, Sandeep; Ashwin, Ashok Kumar Sreelatha; Pihlstrom, Lasse et al

in Neurology (2022)

Background and Objectives: Considerable heterogeneity exists in the literature concerning genetic determinants of the age of onset (AAO) of Parkinson\textquoterights disease (PD), which could be ... [more ▼]

Background and Objectives: Considerable heterogeneity exists in the literature concerning genetic determinants of the age of onset (AAO) of Parkinson\textquoterights disease (PD), which could be attributed to lack of well-powered replication cohorts. The previous largest GWAS identified SNCA and TMEM175 loci on chromosome (Chr) 4 with a significant influence on AAO of PD, these have not been independently replicated. The present study aims to conduct a meta-analysis of GWAS of PD AAO and validate previously observed findings in worldwide populations.Methods: A meta-analysis was performed on PD AAO GWAS of 30 populations of predominantly European ancestry from the Comprehensive Unbiased Risk Factor Assessment for Genetics and Environment in Parkinson\textquoterights Disease (COURAGE-PD) consortium. This was followed up by combining our study with the largest publicly available European ancestry dataset compiled by the International Parkinson disease Genomics Consortium (IPDGC).Results: The COURAGE-PD included a cohort of 8,535 patients with PD (91.9\%: Europeans, 9.1\%: East-Asians). The average AAO in the COURAGE-PD dataset was 58.9 years (SD=11.6), with an under-representation of females (40.2\%). The heritability estimate for AAO in COURAGE-PD was 0.083 (SE=0.057). None of the loci reached genome-wide significance (P\<5x10-8). Nevertheless, the COURAGE-PD dataset confirmed the role of the previously published TMEM175 variant as genetic determinant of AAO of PD with Bonferroni-corrected nominal levels of significance (P\<0.025): (rs34311866:β(SE)COURAGE=0.477(0.203), PCOURAGE=0.0185). The subsequent meta-analysis of COURAGE-PD and IPDGC datasets (Ntotal=25,950) led to the identification of two genome-wide significant association signals on Chr 4, including the previously reported SNCA locus (rs983361:β(SE)COURAGE+IPDGC=0.720(0.122), PCOURAGE+IPDGC=3.13x10-9) and a novel BST1 locus (rs4698412:β(SE)COURAGE+IPDGC=-0.526(0.096), PCOURAGE+IPDGC=4.41x10-8).Discussion: Our study further refines the genetic architecture of Chr 4 underlying the AAO of the PD phenotype through the identification of BST1 as a novel AAO PD locus. These findings open a new direction for the development of treatments to delay the onset of PD. [less ▲]

Detailed reference viewed: 23 (0 UL)
Full Text
Peer Reviewed
See detailDairy Intake and Parkinson's Disease: A Mendelian Randomization Study
Domenighetti, Cloé; Sugier, Pierre-Emmanuel; Ashok Kumar Sreelatha, Ashwin et al

in Movement Disorders (2022)

Abstract Background Previous prospective studies highlighted dairy intake as a risk factor for Parkinson's disease (PD), particularly in men. It is unclear whether this association is causal or explained ... [more ▼]

Abstract Background Previous prospective studies highlighted dairy intake as a risk factor for Parkinson's disease (PD), particularly in men. It is unclear whether this association is causal or explained by reverse causation or confounding. Objective The aim is to examine the association between genetically predicted dairy intake and PD using two-sample Mendelian randomization (MR). Methods We genotyped a well-established instrumental variable for dairy intake located in the lactase gene (rs4988235) within the Courage-PD consortium (23 studies; 9823 patients and 8376 controls of European ancestry). Results Based on a dominant model, there was an association between genetic predisposition toward higher dairy intake and PD (odds ratio [OR] per one serving per day = 1.70, 95 confidence interval = 1.12–2.60, P = 0.013) that was restricted to men (OR = 2.50 [1.37–4.56], P = 0.003; P-difference with women = 0.029). Conclusions Using MR, our findings provide further support for a causal relationship between dairy intake and higher PD risk, not biased by confounding or reverse causation. Further studies are needed to elucidate the underlying mechanisms. © 2022 International Parkinson and Movement Disorder Society [less ▲]

Detailed reference viewed: 62 (4 UL)
Full Text
Peer Reviewed
See detailPINK1 Protects against Staurosporine-Induced Apoptosis by Interacting with Beclin1 and Impairing Its Pro-Apoptotic Cleavage.
Brunelli, Francesco; Torosantucci, Liliana; Gelmetti, Vania et al

in Cells (2022), 11(4),

PINK1 is a causative gene for Parkinson's disease and the corresponding protein has been identified as a master regulator of mitophagy-the autophagic degradation of damaged mitochondria. It interacts with ... [more ▼]

PINK1 is a causative gene for Parkinson's disease and the corresponding protein has been identified as a master regulator of mitophagy-the autophagic degradation of damaged mitochondria. It interacts with Beclin1 to regulate autophagy and initiate autophagosome formation, even outside the context of mitophagy. Several other pro-survival functions of this protein have been described and indicate that it might play a role in other disorders, such as cancer and proliferative diseases. In this study, we investigated a novel anti-apoptotic function of PINK1. To do so, we used SH-SY5Y neuroblastoma cells, a neuronal model used in Parkinson's disease and cancer studies, to characterize the pro-survival functions of PINK1 in response to the apoptosis inducer staurosporine. In this setting, we found that staurosporine induces apoptosis but not mitophagy, and we demonstrated that PINK1 protects against staurosporine-induced apoptosis by impairing the pro-apoptotic cleavage of Beclin1. Our data also show that staurosporine-induced apoptosis is preceded by a phase of enhanced autophagy, and that PINK1 in this context regulates the switch from autophagy to apoptosis. PINK1 protein levels progressively decrease after treatment, inducing this switch. The PINK1-Beclin1 interaction is crucial in exerting this function, as mutants that are unable to interact do not show the anti-apoptotic effect. We characterized a new anti-apoptotic function of PINK1 that could provide options for treatment in proliferative or neurodegenerative diseases. [less ▲]

Detailed reference viewed: 52 (1 UL)
Full Text
Peer Reviewed
See detailLIPAD (LRRK2/Luebeck International Parkinson's Disease) Study Protocol: Deep Phenotyping of an International Genetic Cohort
Usnich, Tatiana; Vollstedt, Eva-Juliane; Schell, Nathalie et al

in Frontiers in Neurology (2021), 12

Background: Pathogenic variants in the Leucine-rich repeat kinase 2 ( LRRK2) gene are the most common known monogenic cause of Parkinson's disease (PD). LRRK2 -linked PD is clinically indistinguishable ... [more ▼]

Background: Pathogenic variants in the Leucine-rich repeat kinase 2 ( LRRK2) gene are the most common known monogenic cause of Parkinson's disease (PD). LRRK2 -linked PD is clinically indistinguishable from idiopathic PD and inherited in an autosomal dominant fashion with reduced penetrance and variable expressivity that differ across ethnicities and geographic regions. Objective: To systematically assess clinical signs and symptoms including non-motor features, comorbidities, medication and environmental factors in PD patients, unaffected LRRK2 pathogenic variant carriers, and controls. A further focus is to enable the investigation of modifiers of penetrance and expressivity of LRRK2 pathogenic variants using genetic and environmental data. Methods: Eligible participants are invited for a personal or online examination which comprises completion of a detailed eCRF and collection of blood samples (to obtain DNA, RNA, serum/plasma, immune cells), urine as well as household dust. We plan to enroll 1,000 participants internationally: 300 with LRRK2 -linked PD, 200 with LRRK2 pathogenic variants but without PD, 100 PD patients with pathogenic variants in the GBA or PRKN genes, 200 patients with idiopathic PD, and 200 healthy persons without pathogenic variants. Results: The eCRF consists of an investigator-rated (1 h) and a self-rated (1.5 h) part. The first part includes the Movement Disorder Society Unified Parkinson's Disease Rating, Hoehn \&Yahr, and Schwab \& England Scales, the Brief Smell Identification Test, and Montreal Cognitive Assessment. The self-rating part consists of a PD risk factor, food frequency, autonomic dysfunction, and quality of life questionnaires, the Pittsburgh Sleep Quality Inventory, and the Epworth Sleepiness as well as the Hospital Anxiety and Depression Scales. The first 15 centers have been initiated and the first 150 participants enrolled (as of March 25th, 2021). Conclusions: LIPAD is a large-scale international scientific effort focusing on deep phenotyping of LRRK2 -linked PD and healthy pathogenic variant carriers, including the comparison with additional relatively frequent genetic forms of PD, with a future perspective to identify genetic and environmental modifiers of penetrance and expressivity Clinical Trial Registration: ClinicalTrials.gov , NCT04214509. [less ▲]

Detailed reference viewed: 59 (1 UL)
Full Text
Peer Reviewed
See detailMitochondrial damage-associated inflammation highlights biomarkers in PRKN/PINK1 parkinsonism
Borsche, Max; Koenig, Inke; Delcambre, Sylvie UL et al

in Brain: a Journal of Neurology (2020)

There is increasing evidence for a role of inflammation in Parkinson’s disease. Recent research in murine models suggests that parkin and PINK1 deficiency leads to impaired mitophagy, which causes the ... [more ▼]

There is increasing evidence for a role of inflammation in Parkinson’s disease. Recent research in murine models suggests that parkin and PINK1 deficiency leads to impaired mitophagy, which causes the release of mitochondrial DNA (mtDNA), thereby triggering inflammation. Specifically, the CGAS (cyclic GMP-AMP synthase)-STING (stimulator of interferon genes) pathway mitigates activation of the innate immune system, quantifiable as increased interleukin-6 (IL6) levels. However, the role of IL6 and circulating cell-free mtDNA in unaffected and affected individuals harbouring mutations in PRKN/PINK1 and idiopathic Parkinson’s disease patients remain elusive. We investigated IL6, C-reactive protein, and circulating cell-free mtDNA in serum of 245 participants in two cohorts from tertiary movement disorder centres. We performed a hypothesis-driven rank-based statistical approach adjusting for multiple testing. We detected (i) elevated IL6 levels in patients with biallelic PRKN/PINK1 mutations compared to healthy control subjects in a German cohort, supporting the concept of a role for inflammation in PRKN/PINK1-linked Parkinson’s disease. In addition, the comparison of patients with biallelic and heterozygous mutations in PRKN/PINK1 suggests a gene dosage effect. The differences in IL6 levels were validated in a second independent Italian cohort; (ii) a correlation between IL6 levels and disease duration in carriers of PRKN/PINK1 mutations, while no such association was observed for idiopathic Parkinson’s disease patients. These results highlight the potential of IL6 as progression marker in Parkinson’s disease due to PRKN/PINK1 mutations; (iii) increased circulating cell-free mtDNA serum levels in both patients with biallelic or with heterozygous PRKN/PINK1 mutations compared to idiopathic Parkinson’s disease, which is in line with previous findings in murine models. By contrast, circulating cell-free mtDNA concentrations in unaffected heterozygous carriers of PRKN/PINK1 mutations were comparable to control levels; and (iv) that circulating cell-free mtDNA levels have good predictive potential to discriminate between idiopathic Parkinson’s disease and Parkinson’s disease linked to heterozygous PRKN/PINK1 mutations, providing functional evidence for a role of heterozygous mutations in PRKN or PINK1 as Parkinson’s disease risk factor. Taken together, our study further implicates inflammation due to impaired mitophagy and subsequent mtDNA release in the pathogenesis of PRKN/PINK1-linked Parkinson’s disease. In individuals carrying mutations in PRKN/PINK1, IL6 and circulating cell-free mtDNA levels may serve as markers of Parkinson’s disease state and progression, respectively. Finally, our study suggests that targeting the immune system with anti-inflammatory medication holds the potential to influence the disease course of Parkinson’s disease, at least in this subset of patients. [less ▲]

Detailed reference viewed: 109 (8 UL)
Full Text
Peer Reviewed
See detailMechanisms of neurodegeneration in Parkinson’s disease: keep neurons in the PINK1
Brunelli, Francesco UL; Valente, Enza Maria; Arena, Giuseppe UL

in Mechanisms of Ageing and Development (2020)

Detailed reference viewed: 30 (4 UL)
Full Text
Peer Reviewed
See detailGlobal investigation and meta-analysis of the C9orf72 (G4C2)n repeat in Parkinson disease.
Theuns, Jessie; Verstraeten, Aline; Sleegers, Kristel et al

in Neurology (2014)

OBJECTIVES: The objective of this study is to clarify the role of (G4C2)n expansions in the etiology of Parkinson disease (PD) in the worldwide multicenter Genetic Epidemiology of Parkinson's Disease (GEO ... [more ▼]

OBJECTIVES: The objective of this study is to clarify the role of (G4C2)n expansions in the etiology of Parkinson disease (PD) in the worldwide multicenter Genetic Epidemiology of Parkinson's Disease (GEO-PD) cohort. METHODS: C9orf72 (G4C2)n repeats were assessed in a GEO-PD cohort of 7,494 patients diagnosed with PD and 5,886 neurologically healthy control individuals ascertained in Europe, Asia, North America, and Australia. RESULTS: A pathogenic (G4C2)n>60 expansion was detected in only 4 patients with PD (4/7,232; 0.055%), all with a positive family history of neurodegenerative dementia, amyotrophic lateral sclerosis, or atypical parkinsonism, while no carriers were detected with typical sporadic or familial PD. Meta-analysis revealed a small increase in risk of PD with an increasing number of (G4C2)n repeats; however, we could not detect a robust association between the C9orf72 (G4C2)n repeat and PD, and the population attributable risk was low. CONCLUSIONS: Together, these findings indicate that expansions in C9orf72 do not have a major role in the pathogenesis of PD. Testing for C9orf72 repeat expansions should only be considered in patients with PD who have overt symptoms of frontotemporal lobar degeneration/amyotrophic lateral sclerosis or apparent family history of neurodegenerative dementia or motor neuron disease. [less ▲]

Detailed reference viewed: 156 (7 UL)
Full Text
Peer Reviewed
See detailProtective effect of LRRK2 p.R1398H on risk of Parkinson's disease is independent of MAPT and SNCA variants.
Heckman, Michael G.; Elbaz, Alexis; Soto-Ortolaza, Alexandra I. et al

in Neurobiology of Aging (2014), 35(1), 2665-14

The best validated susceptibility variants for Parkinson's disease are located in the alpha-synuclein (SNCA) and microtubule-associated protein tau (MAPT) genes. Recently, a protective p.N551K-R1398H ... [more ▼]

The best validated susceptibility variants for Parkinson's disease are located in the alpha-synuclein (SNCA) and microtubule-associated protein tau (MAPT) genes. Recently, a protective p.N551K-R1398H-K1423K haplotype in the leucine-rich repeat kinase 2 (LRRK2) gene was identified, with p.R1398H appearing to be the most likely functional variant. To date, the consistency of the protective effect of LRRK2 p.R1398H across MAPT and SNCA variant genotypes has not been assessed. To address this, we examined 4 SNCA variants (rs181489, rs356219, rs11931074, and rs2583988), the MAPT H1-haplotype-defining variant rs1052553, and LRRK2 p.R1398H (rs7133914) in Caucasian (n = 10,322) and Asian (n = 2289) series. There was no evidence of an interaction of LRRK2 p.R1398H with MAPT or SNCA variants (all p >/= 0.10); the protective effect of p.R1398H was observed at similar magnitude across MAPT and SNCA genotypes, and the risk effects of MAPT and SNCA variants were observed consistently for LRRK2 p.R1398H genotypes. Our results indicate that the association of LRRK2 p.R1398H with Parkinson's disease is independent of SNCA and MAPT variants, and vice versa, in Caucasian and Asian populations. [less ▲]

Detailed reference viewed: 183 (7 UL)
Peer Reviewed
See detailGenome-wide association study in musician's dystonia: a risk variant at the arylsulfatase G locus?
Lohmann, Katja; Schmidt, Alexander; Schillert, Arne et al

in Movement Disorders (2014), 29(7), 921-7

Musician's dystonia (MD) affects 1% to 2% of professional musicians and frequently terminates performance careers. It is characterized by loss of voluntary motor control when playing the instrument ... [more ▼]

Musician's dystonia (MD) affects 1% to 2% of professional musicians and frequently terminates performance careers. It is characterized by loss of voluntary motor control when playing the instrument. Little is known about genetic risk factors, although MD or writer's dystonia (WD) occurs in relatives of 20% of MD patients. We conducted a 2-stage genome-wide association study in whites. Genotypes at 557,620 single-nucleotide polymorphisms (SNPs) passed stringent quality control for 127 patients and 984 controls. Ten SNPs revealed P < 10(-5) and entered the replication phase including 116 MD patients and 125 healthy musicians. A genome-wide significant SNP (P < 5 x 10(-8) ) was also genotyped in 208 German or Dutch WD patients, 1,969 Caucasian, Spanish, and Japanese patients with other forms of focal or segmental dystonia as well as in 2,233 ethnically matched controls. Genome-wide significance with MD was observed for an intronic variant in the arylsulfatase G (ARSG) gene (rs11655081; P = 3.95 x 10(-9) ; odds ratio [OR], 4.33; 95% confidence interval [CI], 2.66-7.05). rs11655081 was also associated with WD (P = 2.78 x 10(-2) ) but not with any other focal or segmental dystonia. The allele frequency of rs11655081 varies substantially between different populations. The population stratification in our sample was modest (lambda = 1.07), but the effect size may be overestimated. Using a small but homogenous patient sample, we provide data for a possible association of ARSG with MD. The variant may also contribute to the risk of WD, a form of dystonia that is often found in relatives of MD patients. [less ▲]

Detailed reference viewed: 213 (13 UL)
Full Text
Peer Reviewed
See detailPopulation-specific frequencies for LRRK2 susceptibility variants in the Genetic Epidemiology of Parkinson's Disease (GEO-PD) Consortium.
Heckman, Michael G.; Soto-Ortolaza, Alexandra I.; Aasly, Jan O. et al

in Movement Disorders (2013), 28(12), 1740-4

BACKGROUND: Variants within the leucine-rich repeat kinase 2 gene are recognized as the most frequent genetic cause of Parkinson's disease. Leucine-rich repeat kinase 2 variation related to disease ... [more ▼]

BACKGROUND: Variants within the leucine-rich repeat kinase 2 gene are recognized as the most frequent genetic cause of Parkinson's disease. Leucine-rich repeat kinase 2 variation related to disease susceptibility displays many features that reflect the nature of complex, late-onset sporadic disorders like Parkinson's disease. METHODS: The Genetic Epidemiology of Parkinson's Disease Consortium recently performed the largest genetic association study for variants in the leucine-rich repeat kinase 2 gene across 23 different sites in 15 countries. RESULTS: Herein, we detail the allele frequencies for the novel risk factors (p.A419V and p.M1646T) and the protective haplotype (p.N551K-R1398H-K1423K) nominated in the original publication. Simple population allele frequencies not only can provide insight into the clinical relevance of specific variants but also can help genetically define patient groups. CONCLUSIONS: Establishing individual patient-based genomic susceptibility profiles that incorporate both risk factors and protective factors will determine future diagnostic and treatment strategies. [less ▲]

Detailed reference viewed: 119 (1 UL)
Full Text
Peer Reviewed
See detailGuidelines for the use and interpretation of assays for monitoring autophagy.
Klionsky, Daniel J.; Abdalla, Fabio C.; Abeliovich, Hagai et al

in Autophagy (2012), 8(4), 445-544

In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field ... [more ▼]

In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field. [less ▲]

Detailed reference viewed: 635 (51 UL)
Full Text
Peer Reviewed
See detailAssociation of LRRK2 exonic variants with susceptibility to Parkinson's disease: a case-control study.
Ross, Owen A.; Soto-Ortolaza, Alexandra I.; Heckman, Michael G. et al

in Lancet Neurology (2011), 10(10), 898-908

BACKGROUND: Background The leucine-rich repeat kinase 2 gene (LRRK2) harbours highly penetrant mutations that are linked to familial parkinsonism. However, the extent of its polymorphic variability in ... [more ▼]

BACKGROUND: Background The leucine-rich repeat kinase 2 gene (LRRK2) harbours highly penetrant mutations that are linked to familial parkinsonism. However, the extent of its polymorphic variability in relation to risk of Parkinson's disease (PD) has not been assessed systematically. We therefore assessed the frequency of LRRK2 exonic variants in individuals with and without PD, to investigate the role of the variants in PD susceptibility. METHODS: LRRK2 was genotyped in patients with PD and controls from three series (white, Asian, and Arab-Berber) from sites participating in the Genetic Epidemiology of Parkinson's Disease Consortium. Genotyping was done for exonic variants of LRRK2 that were identified through searches of literature and the personal communications of consortium members. Associations with PD were assessed by use of logistic regression models. For variants that had a minor allele frequency of 0.5% or greater, single variant associations were assessed, whereas for rarer variants information was collapsed across variants. FINDINGS: 121 exonic LRRK2 variants were assessed in 15 540 individuals: 6995 white patients with PD and 5595 controls, 1376 Asian patients and 962 controls, and 240 Arab-Berber patients and 372 controls. After exclusion of carriers of known pathogenic mutations, new independent risk associations were identified for polymorphic variants in white individuals (M1646T, odds ratio 1.43, 95% CI 1.15-1.78; p=0.0012) and Asian individuals (A419V, 2.27, 1.35-3.83; p=0.0011). A protective haplotype (N551K-R1398H-K1423K) was noted at a frequency greater than 5% in the white and Asian series, with a similar finding in the Arab-Berber series (combined odds ratio 0.82, 0.72-0.94; p=0.0043). Of the two previously reported Asian risk variants, G2385R was associated with disease (1.73, 1.20-2.49; p=0.0026), but no association was noted for R1628P (0.62, 0.36-1.07; p=0.087). In the Arab-Berber series, Y2189C showed potential evidence of risk association with PD (4.48, 1.33-15.09; p=0.012). INTERPRETATION: The results for LRRK2 show that several rare and common genetic variants in the same gene can have independent effects on disease risk. LRRK2, and the pathway in which it functions, is important in the cause and pathogenesis of PD in a greater proportion of patients with this disease than previously believed. These results will help discriminate those patients who will benefit most from therapies targeted at LRRK2 pathogenic activity. FUNDING: Michael J Fox Foundation and National Institutes of Health. [less ▲]

Detailed reference viewed: 136 (1 UL)
Full Text
Peer Reviewed
See detailIndependent and joint effects of the MAPT and SNCA genes in Parkinson disease.
Elbaz, Alexis; Ross, Owen A.; Ioannidis, John P. A. et al

in Annals of neurology (2011), 69(5), 778-92

OBJECTIVE: We studied the independent and joint effects of the genes encoding alpha-synuclein (SNCA) and microtubule-associated protein tau (MAPT) in Parkinson disease (PD) as part of a large meta ... [more ▼]

OBJECTIVE: We studied the independent and joint effects of the genes encoding alpha-synuclein (SNCA) and microtubule-associated protein tau (MAPT) in Parkinson disease (PD) as part of a large meta-analysis of individual data from case-control studies participating in the Genetic Epidemiology of Parkinson's Disease (GEO-PD) consortium. METHODS: Participants of Caucasian ancestry were genotyped for a total of 4 SNCA (rs2583988, rs181489, rs356219, rs11931074) and 2 MAPT (rs1052553, rs242557) single nucleotide polymorphism (SNPs). Individual and joint effects of SNCA and MAPT SNPs were investigated using fixed- and random-effects logistic regression models. Interactions were studied on both a multiplicative and an additive scale, and using a case-control and case-only approach. RESULTS: Fifteen GEO-PD sites contributed a total of 5,302 cases and 4,161 controls. All 4 SNCA SNPs and the MAPT H1-haplotype-defining SNP (rs1052553) displayed a highly significant marginal association with PD at the significance level adjusted for multiple comparisons. For SNCA, the strongest associations were observed for SNPs located at the 3' end of the gene. There was no evidence of statistical interaction between any of the 4 SNCA SNPs and rs1052553 or rs242557, neither on the multiplicative nor on the additive scale. INTERPRETATION: This study confirms the association between PD and both SNCA SNPs and the H1 MAPT haplotype. It shows, based on a variety of approaches, that the joint action of variants in these 2 loci is consistent with independent effects of the genes without additional interacting effects. [less ▲]

Detailed reference viewed: 147 (0 UL)