References of "Torres-Gonzalez, Arturo"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailExperimental Evaluation of a Team of Multiple Unmanned Aerial Vehicles for Cooperative Construction
Real, Fran; Castaño, Angel; Torres-Gonzalez, Arturo et al

in IEEE Access (2021)

This article presents a team of multiple Unmanned Aerial Vehicles (UAVs) to perform cooperative missions for autonomous construction. In particular, the UAVs have to build a wall made of bricks that need ... [more ▼]

This article presents a team of multiple Unmanned Aerial Vehicles (UAVs) to perform cooperative missions for autonomous construction. In particular, the UAVs have to build a wall made of bricks that need to be picked and transported from different locations. First, we propose a novel architecture for multi-robot systems operating in outdoor and unstructured environments, where robustness and reliability play a key role. Then, we describe the design of our aerial platforms and grasping mechanisms to pick, transport and place bricks. The system was particularly developed for the Mohamed Bin Zayed International Robotics Challenge (MBZIRC), where Challenge 2 consisted of building a wall cooperatively with multiple UAVs. However, our approach is more general and extensible to other multi-UAV applications involving physical interaction, like package delivery. We present not only our results in the final stage of MBZIRC, but also our simulations and field experiments throughout the previous months to the competition, where we tuned our system and assessed its performance. [less ▲]

Detailed reference viewed: 33 (2 UL)
Full Text
Peer Reviewed
See detailLocalization System for Lightweight Unmanned Aerial Vehicles in Inspection Tasks
Benjumea, Diego; Alcántara, Alfonso; Ramos, Agustin et al

in Sensors (2021), 21(17 5937),

This paper presents a localization system for Unmanned Aerial Vehicles (UAVs) especially designed to be used in infrastructure inspection, where the UAVs have to fly in challenging conditions, such as ... [more ▼]

This paper presents a localization system for Unmanned Aerial Vehicles (UAVs) especially designed to be used in infrastructure inspection, where the UAVs have to fly in challenging conditions, such as relatively high altitude (e.g., 15 m), eventually with poor or absent GNSS (Global Navigation Satellite System) signal reception, or the need for a BVLOS (Beyond Visual Line of Sight) operation in some periods. In addition, these infrastructure inspection applications impose the following requirements for the localization system: defect traceability, accuracy, reliability, and fault tolerance. Our system proposes a lightweight solution combining multiple stereo cameras with a robotic total station to comply with these requirements, providing full-state estimation (i.e., position, orientation, and linear and angular velocities) in a fixed and time-persistent reference frame. Moreover, the system can align and fuse all sensor measurements in real-time at high frequency. We have integrated this localization system in our aerial platform, and we have tested its performance for inspection in a real-world viaduct scenario, where the UAV has to operate with poor or absent GNSS signal at high altitude. [less ▲]

Detailed reference viewed: 3 (0 UL)