References of "Tombolato, Sara 50008900"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailArea-selective electrodeposition of micro islands for CuInSe2-based photovoltaics
Correia, David; Siopa, Daniel UL; Colombara, Diego UL et al

in Results in Physics (2019), 12

Detailed reference viewed: 204 (4 UL)
Full Text
See detailLocally-confined electrodeposition of Cu(In,Ga)Se2micro islands for micro-concentrator solar cells.
Correa, David; Siopa, Daniel UL; Salomé, Pedro M.P. et al

in IEEE (2018)

Detailed reference viewed: 194 (6 UL)
Full Text
Peer Reviewed
See detailPhotoelectrochemical Screening of Solar Cell Absorber Layers: Electron Transfer Kinetics and Surface Stabilization
Colombara, Diego UL; Dale, Phillip UL; Kissling, Gabriela P. et al

in Journal of Physical Chemistry. C, Nanomaterials and interfaces (2016)

edox electrolyte contacts offer a simple way of testing the photocurrent generation/collection efficiency in partially completed thin-film solar cells without the need to complete the entire fabrication ... [more ▼]

edox electrolyte contacts offer a simple way of testing the photocurrent generation/collection efficiency in partially completed thin-film solar cells without the need to complete the entire fabrication process. However, the development of a reliable quantitative method can be complicated by the instability of the semiconductor/electrolyte interface. In the case of Cu(In,Ga)Se2 (CIGSe) solar cells, these problems can be overcome by using samples that have undergone the next processing step in solar cell fabrication, which involves chemical bath deposition of a thin (ca. 50 nm) CdS buffer layer. The choice of redox system is also critical. The frequently used Eu3+/2+ redox couple is not suitable for reliable performance predictions since it suffers from very slow electron transfer kinetics. This leads to the buildup of photogenerated electrons near the interface, resulting in electron–hole recombination. This effect, which can be seen in the transient photocurrent response, has been quantified using intensity-modulated photocurrent spectroscopy (IMPS). The study has demonstrated that the more oxidizing Fe(CN)63–/4– redox system can be used when a CdS buffer layer is deposited on the CIGSe absorber. The wide bandgap CdS acts as a barrier to hole injection, preventing decomposition of the CIGSe and formation of surface recombination centers. The IMPS response of this system shows that there is no recombination; i.e., electron scavenging is very rapid. It is shown that measurements of the external quantum efficiency made using the Fe(CN)63–/4– redox couple with CdS-coated CIGSe layers can provide reliable predictions of the short-circuit currents of the complete solar cells. Similar results have been obtained using CdS-coated GaAs layers, suggesting that the new approach may be widely applicable. [less ▲]

Detailed reference viewed: 288 (12 UL)
Full Text
Peer Reviewed
See detailOptical methodology for process monitoring of chalcopyrite photovoltaic technologies: Application to low cost Cu(In,Ga)(S,Se)2 electrodeposition based processes
Oliva, Florian; Kretzschmar, Steffen; Colombara, Diego UL et al

in Solar Energy Materials and Solar Cells (2016)

Non-destructive characterization of both single layers and completed devices are important issues for the development of efficient and low cost Cu(In,Ga)(S,Se)2 (CIGS) modules at high yields. This implies ... [more ▼]

Non-destructive characterization of both single layers and completed devices are important issues for the development of efficient and low cost Cu(In,Ga)(S,Se)2 (CIGS) modules at high yields. This implies for the need of methodologies suitable for the assessment of optical, electrical, and physico-chemical parameters that are relevant for the final device efficiency and that can be used for quality control and process monitoring at different process steps. In these applications, detection of in-homogeneities in the different layers from large area modules is especially relevant, being the presence of these inhomogeneities responsible for the existing gap between the efficiencies achieved in these technologies at cell and module levels. In this context, this work reviews the different optical methodologies that have been developed in the framework of the SCALENANO European project for the advanced assessment of the different layers in high efficiency electrodeposited – based CIGS devices. This has includes different strategies as those based on Raman scattering, Photoluminescence/Electroluminescence (PL/EL) based techniques and new photoelectrochemical based tools and firstly Raman spectroscopy is very sensitive to both composition and crystal quality parameters that are determining for device efficiency. Use of resonant Raman excitation strategies allows achieving a high sensitivity of the Raman spectra to the analysed features in the different regions of the device. This involves selection of the suitable excitation wavelength (in the broad spectral region from UV to IR) for the resonant Raman excitation of the required layer in the device. The strong increase in the intensity of the Raman peaks related to the use of resonant excitation conditions allows also decreasing the measuring time to times compatible with the implementation of these techniques at online process monitoring level. Analysed parameters include the electrical conductivity of the Al-doped ZnO window layer, the thickness of the CdS buffer layer and the chemical composition (S/(S+Se) relative content) and presence of relevant secondary phases as Cu-poor ordered vacancy compounds in the surface region of the absorbers. In addition PL/EL imaging are powerful techniques that provide direct access to the optoelectronic properties of the materials and devices. Whereas EL is performed using complete devices by injecting current in analogy to the operation of a light emitting diode, PL allows the characterization of bare absorber materials without the need for any functional or contacting layers. Moreover, semiconductor photo-electrochemistry (PEC) is a versatile technique that enables many opto-electronic properties of semiconductors to be determined. Essentially, a semiconductor on a conducting substrate placed in a solution containing redox species forms a Schottky barrier junction. The formation of such a diode enables basic semiconductor properties to be measured such as doping type, doping density, band gap and the flat band position versus the vacuum energy scale. In all these cases, quality control indicators suitable for the advanced assessment of these processes have been identified and validated for the electrodeposition-based processes developed at Nexcis Company. [less ▲]

Detailed reference viewed: 220 (14 UL)