References of "Tedgue Beltrao, Gabriel 50037138"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailFPGA Design and Implementation of a Real-time FM/PM Pseudo Random Waveform Generation for Noise Radars
Tedgue Beltrao, Gabriel UL; Alisson, Barreto; Leandro, Pralon et al

in Proceedings of the 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 2020 (2020)

Noise Radar technology is the general term used to describe radar systems that employ realizations of a given stochastic process as transmit waveforms. With the advances made in hardware as well as the ... [more ▼]

Noise Radar technology is the general term used to describe radar systems that employ realizations of a given stochastic process as transmit waveforms. With the advances made in hardware as well as the rise of the software defined noise radar concept, waveform design emerges as an important research area related to such systems. Several optimization algorithms have been proposed to generate pseudo-random waveforms with specific desired features, specially with respect to sidelobes. Nevertheless, not only modifying random waveforms may compromise their LPI performance, but also the implementation of such algorithms in real time applications may not be feasible. Within this context, this paper analyzes varied design architectures for FM/PM pseudo-noise waveform generation, considering a real-time application. The proposed architectures are verified in a co-simulation environment using the Xilinx System Generator tool and implemented on reconfigurable hardware, i.e., a Xilinx Field Programmable Gate Array (FPGA) is taken into consideration. Timing, resource consumption, and the trade-offs related to hardware area and performance are then investigated. [less ▲]

Detailed reference viewed: 73 (8 UL)
Full Text
Peer Reviewed
See detailJoint Waveform/Receiver Design for Vital-Sign Detection in Signal-Dependent Interference
Tedgue Beltrao, Gabriel UL; Alaeekerahroodi, Mohammad UL; Schroeder, Udo et al

in Proceedings of the 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 2020 (2020)

This paper presents the joint design of discrete slow-time radar waveform and receive filter, with the aim of enhancing the Signal to Interference and Noise Ratio (SINR) in phase coded radar systems for ... [more ▼]

This paper presents the joint design of discrete slow-time radar waveform and receive filter, with the aim of enhancing the Signal to Interference and Noise Ratio (SINR) in phase coded radar systems for vital-sign monitoring. Towards this, we consider maximizing the SINR at the input of the vital-sign estimation block, when transmitting hardware efficient Mary Phase Shift Keying (MPSK) sequences. This multi-variable and non-convex optimization problem is efficiently solved based on a Minimum Variance Distortionless Response (MVDR) filter, with the Coordinate Descent (CD) approach for the sequence optimization, and the obtained results have shown attractive interference suppression capabilities, even for the simple binary case. [less ▲]

Detailed reference viewed: 82 (5 UL)
Full Text
Peer Reviewed
See detailSidelobe Performance Analysis of Noise Waveforms Considering the Doppler Mismatch
Tedgue Beltrao, Gabriel UL; Pralon, Leandro; Alaeekerahroodi, Mohammad UL et al

in Proceedings of the 21st International Radar Symposium (IRS), Warsaw, Poland, 2020 (2020)

Waveform design and optimization algorithms generally assume a zero-Doppler ideal case to reach an optimum or satisfactory solution in terms of the matched filter output. Therefore, its performance is ... [more ▼]

Waveform design and optimization algorithms generally assume a zero-Doppler ideal case to reach an optimum or satisfactory solution in terms of the matched filter output. Therefore, its performance is usually characterized only in terms of the resultant waveforms autocorrelation function, neglecting the practical situation in which the received signal is modulated by the target’s Doppler shift. Within this context, this work investigates the Doppler mismatch effects in the Integrated Sidelobe Level (ISL) performance of previously designed/optimized noise waveforms. The analysis has shown that, despite much better results for steady targets, the increasing Doppler mismatch reduces the ISL performance of optimized waveforms, until similar levels achieved when no optimization is performed. To address that, a subpulse Doppler processing approach is also considered, and the results have shown that, besides increasing the Doppler tolerance, it has also increased the optimized waveform robustness to the Doppler mismatch, reducing the resultant ISL loss and thus extending its applicability. [less ▲]

Detailed reference viewed: 48 (5 UL)