References of "Syrbe, Steffen"
     in
Bookmark and Share    
Full Text
See detailPredicting Functional Effects of Missense Variants in Voltage-Gated Sodium and Calcium Channels
Heyne, Henrike O.; Baez-Nieto, David; Iqbal, Sumaiya et al

E-print/Working paper (2019)

Malfunctions of voltage-gated sodium and calcium channels (SCN and CACNA1 genes) have been associated with severe neurologic, psychiatric, cardiac and other diseases. Altered channel activity is ... [more ▼]

Malfunctions of voltage-gated sodium and calcium channels (SCN and CACNA1 genes) have been associated with severe neurologic, psychiatric, cardiac and other diseases. Altered channel activity is frequently grouped into gain or loss of ion channel function (GOF or LOF, respectively) which is not only corresponding to clinical disease manifestations, but also to differences in drug response. Experimental studies of channel function are therefore important, but laborious and usually focus only on a few variants at a time. Based on known gene-disease-mechanisms, we here infer LOF (518 variants) and GOF (309 variants) of likely pathogenic variants from disease phenotypes of variant carriers. We show regional clustering of inferred GOF and LOF variants, respectively, across the alignment of the entire gene family, suggesting shared pathomechanisms in the SCN/CACNA1 genes. By training a machine learning model on sequence- and structure-based features we predict LOF- or GOF- associated disease phenotypes (ROC = 0.85) of likely pathogenic missense variants. We then successfully validate the GOF versus LOF prediction on 87 functionally tested variants in SCN1/2/8A and CACNA1I (ROC = 0.73) and in exome-wide data from > 100.000 cases and controls. Ultimately, functional prediction of missense variants in clinically relevant genes will facilitate precision medicine in clinical practice. [less ▲]

Detailed reference viewed: 104 (0 UL)
Full Text
Peer Reviewed
See detailDe novo loss- or gain-of-function mutations in KCNA2 cause epileptic encephalopathy
Syrbe, Steffen; Hedrich, Ulrike B.S.; Riesch, Erik et al

in Nature Genetics (2015), 47(4), 393-9

Epileptic encephalopathies are a phenotypically and genetically heterogeneous group of severe epilepsies accompanied by intellectual disability and other neurodevelopmental features1–6. Using next ... [more ▼]

Epileptic encephalopathies are a phenotypically and genetically heterogeneous group of severe epilepsies accompanied by intellectual disability and other neurodevelopmental features1–6. Using next-generation sequencing, we identified four different de novo mutations in KCNA2, encoding the potassium channel KV1.2, in six patients with epileptic encephalopathy (one mutation recurred three times independently). Four individuals presented with febrile and multiple afebrile, often focal seizure types, multifocal epileptiform discharges strongly activated by sleep, mild to moderate intellectual disability, delayed speech development and sometimes ataxia. Functional studies of the two mutations associated with this phenotype showed almost complete loss of function with a dominant-negative effect. Two further individuals presented with a different and more severe epileptic encephalopathy phenotype. They carried mutations inducing a drastic gain-of-function effect leading to permanently open channels. These results establish KCNA2 as a new gene involved in human neurodevelopmental disorders through two different mechanisms, predicting either hyperexcitability or electrical silencing of KV1.2-expressing neurons. [less ▲]

Detailed reference viewed: 206 (17 UL)