References of "Suarez-Fernandez, Ramon"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailTML: a language to specify aerial robotic missions for the framework Aerostack
Molina, Martin; Suarez-Fernandez, Ramon; Sampedro, Carlos et al

in International Journal of Intelligent Computing and Cybernetics (2017), 10(4), 491-512

Purpose - The main purpose of this paper is to describe the specification language TML for adaptive mission plans that we designed and implemented for the open source framework Aerostack for aerial ... [more ▼]

Purpose - The main purpose of this paper is to describe the specification language TML for adaptive mission plans that we designed and implemented for the open source framework Aerostack for aerial robotics. Approach – The TML language combines a task-based hierarchical approach together with a more flexible representation, rule-based reactive planning, to facilitate adaptability. This approach includes additional notions that abstract programming details. We built an interpreter integrated in the software framework Aerostack. The interpreter was validated with flight experiments for multi-robot missions in dynamic environments. Findings – The experiments proved that the TML language is easy to use and expressive enough to formulate adaptive missions in dynamic environments. The experiments also showed that the TML interpreter is efficient to execute multi-robot aerial missions and reusable for different platforms. The TML interpreter is able to verify the mission plan before its execution, which increases robustness and safety, avoiding the execution of certain plans that are not feasible. Originality – One of the main contributions of this work is the availability of a reliable solution to specify aerial mission plans, integrated in an active open-source project with periodic releases. To the best knowledge of the authors, there are not solutions similar to this in other active open-source projects. As additional contributions, TML uses an original combination of representations for adaptive mission plans (i.e., task trees with original abstract notions and rule-based reactive planning) together with the demonstration of its adequacy for aerial robotics. [less ▲]

Detailed reference viewed: 52 (2 UL)
Full Text
Peer Reviewed
See detailUBRISTES: UAV-based building rehabilitation with visible and thermal infrared remote sensing
Carrio, Adrian; Pestana, Jesus; Sanchez Lopez, Jose Luis UL et al

in Robot 2015: Second Iberian Robotics Conference (2016, November)

Detailed reference viewed: 47 (3 UL)
Full Text
Peer Reviewed
See detailThermal monitoring of facades by UAV: applications for building rehabilitation
Gonzalez-Rodrigo, Beatriz; Tendero-Caballero, Ricardo; Garcia-De-Viedma, Maria et al

in Dyna (2016), 91(5), 571--577

Detailed reference viewed: 43 (0 UL)
Full Text
Peer Reviewed
See detailA flexible and dynamic mission planning architecture for UAV swarm coordination
Sampedro, Carlos; Bavle, Hriday; Sanchez Lopez, Jose Luis UL et al

in 2016 International Conference on Unmanned Aircraft Systems (ICUAS) (2016, June)

Detailed reference viewed: 28 (1 UL)
Full Text
Peer Reviewed
See detailA vision based aerial robot solution for the Mission 7 of the International Aerial Robotics Competition
Sanchez Lopez, Jose Luis UL; Pestana, Jesus; Collumeau, Jean-Francois et al

in 2015 International Conference on Unmanned Aircraft Systems (ICUAS) (2015, June)

The International Aerial Robotics Competition (IARC) aims at pulling forward the state of the art in UAV. The Mission's 7 challenge deals mainly with GPS/Laser denied navigation, Robot-Robot interaction ... [more ▼]

The International Aerial Robotics Competition (IARC) aims at pulling forward the state of the art in UAV. The Mission's 7 challenge deals mainly with GPS/Laser denied navigation, Robot-Robot interaction and obstacle avoidance in the setting of a ground robot herding problem. We present in this paper our UAV which took part in the 2014 competition, in the China venue. This year, the mission was not completed by any participant but our team at Technical University of Madrid (UPM) were awarded with two special prizes: Best Target Detection and Best System Control. The platform, hardware and the developed software used in this top leading competition are presented in this paper. This software has three main components: the visual localization and mapping algorithm; the control algorithms; and the mission planner. A statement of the safety measures integrated in the drone and of our efforts to ensure field testing in conditions as close as possible to the challenger's are also included. [less ▲]

Detailed reference viewed: 36 (2 UL)
Full Text
Peer Reviewed
See detailA vision based aerial robot solution for the IARC 2014 by the Technical University of Madrid
Pestana, Jesus; Sanchez Lopez, Jose Luis UL; Suarez-Fernandez, Ramon et al

Scientific Conference (2014, August)

Detailed reference viewed: 37 (0 UL)
Full Text
Peer Reviewed
See detailA system for the design and development of vision-based multi-robot quadrotor swarms
Sanchez Lopez, Jose Luis UL; Pestana, Jesus; de la Puente, Paloma et al

in 2014 International Conference on Unmanned Aircraft Systems (ICUAS) (2014, May)

This paper presents a cost-effective framework for the prototyping of vision-based quadrotor multi-robot systems, which core characteristics are: modularity, compatibility with different platforms and ... [more ▼]

This paper presents a cost-effective framework for the prototyping of vision-based quadrotor multi-robot systems, which core characteristics are: modularity, compatibility with different platforms and being flight-proven. The framework is fully operative, which is shown in the paper through simulations and real flight tests of up to 5 drones, and was demonstrated with the participation in an international micro-aerial vehicles competition3 where it was awarded with the First Prize in the Indoors Autonomy Challenge. The motivation of this framework is to allow the developers to focus on their own research by decoupling the development of dependent modules, leading to a more cost-effective progress in the project. The basic instance of the framework that we propose, which is flight-proven with the cost-efficient and reliable platform Parrot AR Drone 2.0 and is open-source, includes several modules that can be reused and modified, such as: a basic sequential mission planner, a basic 2D trajectory planner, an odometry state estimator, localization and mapping modules which obtain absolute position measurements using visual markers, a trajectory controller and a visualization module. [less ▲]

Detailed reference viewed: 52 (4 UL)
Full Text
Peer Reviewed
See detailMonocular Visual-Inertial SLAM-Based Collision Avoidance Strategy for Fail-Safe UAV Using Fuzzy Logic Controllers
Fu, Changhong; Olivares Mendez, Miguel Angel UL; Suarez-Fernandez, Ramon et al

in Journal of Intelligent and Robotic Systems (2014), 73(1-4), 513-533

Detailed reference viewed: 276 (23 UL)
Full Text
Peer Reviewed
See detailReal-time Adaptive Multi-Classifier Multi-Resolution Visual Tracking Framework for Unmanned Aerial Vehicles
Fu, Changhong; Suarez-Fernandez, Ramon; Olivares Mendez, Miguel Angel UL et al

in Second Workshop on Research, Development and Education on Unmanned Aerial Systems (RED-UAS 2013) (2013)

This paper presents a novel robust visual tracking framework, based on discrimi- native method, for Unmanned Aerial Vehicles (UAVs) to track an arbitrary 2D/3D target at real-time frame rates, that is ... [more ▼]

This paper presents a novel robust visual tracking framework, based on discrimi- native method, for Unmanned Aerial Vehicles (UAVs) to track an arbitrary 2D/3D target at real-time frame rates, that is called the Adaptive Multi-Classifier Multi-Resolution (AMCMR) framework. In this framework, adaptive Multiple Classifiers (MC) are updated in the (k- 1)th frame-based Multiple Resolutions (MR) structure with compressed positive and negative samples, and then applied them in the kth frame-based Multiple Resolutions (MR) structure to detect the current target. The sample importance has been integrated into this framework to improve the tracking stability and accuracy. The performance of this framework was evaluated with the Ground Truth (GT) in different types of public image databases and real flight- based aerial image datasets firstly, then the framework has been applied in the UAV to inspect the Offshore Floating Platform (OFP). The evaluation and application results show that this framework is more robust, efficient and accurate against the existing state-of-art trackers, overcoming the problems generated by the challenging situations such as obvious appearance change, variant illumination, partial/full target occlusion, blur motion, rapid pose variation and onboard mechanical vibration, among others. To our best knowledge, this is the first work to present this framework for solving the online learning and tracking freewill 2D/3D target problems, and applied it in the UAVs. [less ▲]

Detailed reference viewed: 170 (15 UL)