References of "Strigun, Alexander"
     in
Bookmark and Share    
Peer Reviewed
See detailDoxorubicin increases oxidative metabolism in HL-1 cardiomyocytes as shown by 13C metabolic flux analysis.
Strigun, Alexander; Wahrheit, Judith; Niklas, Jens et al

in Toxicological sciences : an official journal of the Society of Toxicology (2012), 125(2), 595-606

Doxorubicin (DXR), an anticancer drug, is limited in its use due to severe cardiotoxic effects. These effects are partly caused by disturbed myocardial energy metabolism. We analyzed the effects of ... [more ▼]

Doxorubicin (DXR), an anticancer drug, is limited in its use due to severe cardiotoxic effects. These effects are partly caused by disturbed myocardial energy metabolism. We analyzed the effects of therapeutically relevant but nontoxic DXR concentrations for their effects on metabolic fluxes, cell respiration, and intracellular ATP. (13)C isotope labeling studies using [U-(13)C(6)]glucose, [1,2-(13)C(2)]glucose, and [U-(13)C(5)]glutamine were carried out on HL-1 cardiomyocytes exposed to 0.01 and 0.02 muM DXR and compared with the untreated control. Metabolic fluxes were calculated by integrating production and uptake rates of extracellular metabolites (glucose, lactate, pyruvate, and amino acids) as well as (13)C-labeling in secreted lactate derived from the respective (13)C-labeled substrates into a metabolic network model. The investigated DXR concentrations (0.01 and 0.02 muM) had no effect on cell viability and beating of the HL-1 cardiomyocytes. Glycolytic fluxes were significantly reduced in treated cells at tested DXR concentrations. Oxidative metabolism was significantly increased (higher glucose oxidation, oxidative decarboxylation, TCA cycle rates, and respiration) suggesting a more efficient use of glucose carbon. These changes were accompanied by decrease of intracellular ATP. We conclude that DXR in nanomolar range significantly changes central carbon metabolism in HL-1 cardiomyocytes, which results in a higher coupling of glycolysis and TCA cycle. The myocytes probably try to compensate for decreased intracellular ATP, which in turn may be the result of a loss of NADH electrons via either formation of reactive oxygen species or electron shunting. [less ▲]

Detailed reference viewed: 62 (0 UL)
Peer Reviewed
See detailMetabolic flux analysis gives an insight on verapamil induced changes in central metabolism of HL-1 cells.
Strigun, Alexander; Noor, Fozia UL; Pironti, Alejandro et al

in Journal of biotechnology (2011), 155(3), 299-307

Verapamil has been shown to inhibit glucose transport in several cell types. However, the consequences of this inhibition on central metabolism are not well known. In this study we focused on verapamil ... [more ▼]

Verapamil has been shown to inhibit glucose transport in several cell types. However, the consequences of this inhibition on central metabolism are not well known. In this study we focused on verapamil induced changes in metabolic fluxes in a murine atrial cell line (HL-1 cells). These cells were adapted to serum free conditions and incubated with 4 muM verapamil and [U-(1)(3)C(5)] glutamine. Specific extracellular metabolite uptake/production rates together with mass isotopomer fractions in alanine and glutamate were implemented into a metabolic network model to calculate metabolic flux distributions in the central metabolism. Verapamil decreased specific glucose consumption rate and glycolytic activity by 60%. Although the HL-1 cells show Warburg effect with high lactate production, verapamil treated cells completely stopped lactate production after 24 h while maintaining growth comparable to the untreated cells. Calculated fluxes in TCA cycle reactions as well as NADH/FADH(2) production rates were similar in both treated and untreated cells. This was confirmed by measurement of cell respiration. Reduction of lactate production seems to be the consequence of decreased glucose uptake due to verapamil. In case of tumors, this may have two fold effects; firstly depriving cancer cells of substrate for anaerobic glycolysis on which their growth is dependent; secondly changing pH of the tumor environment, as lactate secretion keeps the pH acidic and facilitates tumor growth. The results shown in this study may partly explain recent observations in which verapamil has been proposed to be a potential anticancer agent. Moreover, in biotechnological production using cell lines, verapamil may be used to reduce glucose uptake and lactate secretion thereby increasing protein production without introduction of genetic modifications and application of more complicated fed-batch processes. [less ▲]

Detailed reference viewed: 57 (0 UL)
Peer Reviewed
See detailMetabolic profiling using HPLC allows classification of drugs according to their mechanisms of action in HL-1 cardiomyocytes.
Strigun, Alexander; Wahrheit, Judith; Beckers, Simone et al

in Toxicology and applied pharmacology (2011), 252(2), 183-91

Along with hepatotoxicity, cardiotoxic side effects remain one of the major reasons for drug withdrawals and boxed warnings. Prediction methods for cardiotoxicity are insufficient. High content screening ... [more ▼]

Along with hepatotoxicity, cardiotoxic side effects remain one of the major reasons for drug withdrawals and boxed warnings. Prediction methods for cardiotoxicity are insufficient. High content screening comprising of not only electrophysiological characterization but also cellular molecular alterations are expected to improve the cardiotoxicity prediction potential. Metabolomic approaches recently have become an important focus of research in pharmacological testing and prediction. In this study, the culture medium supernatants from HL-1 cardiomyocytes after exposure to drugs from different classes (analgesics, antimetabolites, anthracyclines, antihistamines, channel blockers) were analyzed to determine specific metabolic footprints in response to the tested drugs. Since most drugs influence energy metabolism in cardiac cells, the metabolite "sub-profile" consisting of glucose, lactate, pyruvate and amino acids was considered. These metabolites were quantified using HPLC in samples after exposure of cells to test compounds of the respective drug groups. The studied drug concentrations were selected from concentration response curves for each drug. The metabolite profiles were randomly split into training/validation and test set; and then analysed using multivariate statistics (principal component analysis and discriminant analysis). Discriminant analysis resulted in clustering of drugs according to their modes of action. After cross validation and cross model validation, the underlying training data were able to predict 50%-80% of conditions to the correct classification group. We show that HPLC based characterisation of known cell culture medium components is sufficient to predict a drug's potential classification according to its mode of action. [less ▲]

Detailed reference viewed: 59 (0 UL)
Peer Reviewed
See detailHigh throughput, non-invasive and dynamic toxicity screening on adherent cells using respiratory measurements.
Beckers, Simone; Noor, Fozia UL; Muller-Vieira, Ursula et al

in Toxicology in vitro : an international journal published in association with BIBRA (2010), 24(2), 686-94

A dynamic respiration assay based on luminescence decay time detection of oxygen for high throughput toxicological assessment is presented. The method uses 24-well plates (OxoDishes) read with the help of ... [more ▼]

A dynamic respiration assay based on luminescence decay time detection of oxygen for high throughput toxicological assessment is presented. The method uses 24-well plates (OxoDishes) read with the help of a sensor dish reader placed in a humidified CO(2)-incubator. Adherent primary rat hepatocytes and the human hepatic cell line Hep G2 were exposed to known toxic compounds. Dissolved oxygen concentration, a measure of respiration, was measured with an oxygen sensor optode immobilized in the centre of each well. The cells were maintained in the dishes during the assay period and can afterwards be processed for further analyses. This dynamic, non-invasive measurement allowed calculation of 50% lethal concentrations (LC(50)) for any incubation time point giving concentration-time-dependent responses without further manipulation or removal of the cells from the incubator. Toxicokinetic profiles are compared with Sulforhodamine B assay, a common cytotoxicity assay. The novel assay is robust and flexible, very easy to carry out and provides continuous online respiration data reflecting dynamic toxicity responses. It can be adapted to any cell-based system and the calculated kinetics contributes to understanding of cell death mechanisms. [less ▲]

Detailed reference viewed: 54 (0 UL)