References of "Stanček, S."
     in
Bookmark and Share    
Full Text
See detailTerahertz-Radiation Photomixers on Nitrogen-Implanted GaAs, (2006) 117 - 120
Mikulics, M.; Marso, Michel UL; Stanček, S. et al

in Proceedings of 6th Intern. Conf. Advanced Semicon. Dev. & Microsystems ASDAM’06 (2006)

We have fabricated and characterized photomixers based on high energy nitrogen-ion-implanted GaAs. For material optimization and annealing dynamics in MSM photodetector structures, we used 400 keV ... [more ▼]

We have fabricated and characterized photomixers based on high energy nitrogen-ion-implanted GaAs. For material optimization and annealing dynamics in MSM photodetector structures, we used 400 keV implantation energy with an ion dose of 1´1016 cm-2. For photomixer structures we used 3 MeV energy to implant N+ ions into GaAs substrates, with an ion concentration dose of 3´1012 cm-2. The N+-implanted GaAs photomixers exhibit improved output power in comparison to their counterparts, photomixers fabricated on low-temperature-grown GaAs. The highest output power was 2.6 μW at 850 GHz and about 1 μW at 1 THz. No saturation of the output power with increased bias voltage and optical input power was observed. These characteristics make N+-implanted GaAs the material of choice for efficient high power sources of terahertz radiation. [less ▲]

Detailed reference viewed: 116 (1 UL)
Full Text
Peer Reviewed
See detailTraveling-wave photomixers fabricated on high energy nitrogen-ion-implanted GaAs
Mikulics, M.; Michael, E. A.; Marso, Michel UL et al

in Applied Physics Letters (2006), 89(7), 071103

The authors report on fabrication and measurement of traveling-wave photomixers based on high energy and low dose nitrogen-ion-implanted GaAs. They used 3 MeV energy to implant N+ ions into GaAs ... [more ▼]

The authors report on fabrication and measurement of traveling-wave photomixers based on high energy and low dose nitrogen-ion-implanted GaAs. They used 3 MeV energy to implant N+ ions into GaAs substrates with an ion concentration dose of 3 1012 cm−2. The N+-implanted GaAs photomixers exhibit improvements in the output power in comparison with their counterparts, photomixers fabricated on low-temperature-grown GaAs. The maximal output power was 2.64 W at 850 GHz. No saturation of the output power with increased bias voltage and optical input power was observed. These characteristics make N+-implanted GaAs the material of choice for efficient high power sources of terahertz radiation. [less ▲]

Detailed reference viewed: 62 (0 UL)
Full Text
Peer Reviewed
See detailPhotomixers fabricated on nitrogen-ion-implanted GaAs
Mikulics, M.; Marso, Michel UL; Cámara Mayorga, I. et al

in Applied Physics Letters (2005), 87(4), 41106-1-3

We report on fabrication and measurement of photomixers based on nitrogen-ion-implanted GaAs. We used energies of 500 keV, 700 keV, and 880 keV to implant N+ ions into GaAs substrates with an ion ... [more ▼]

We report on fabrication and measurement of photomixers based on nitrogen-ion-implanted GaAs. We used energies of 500 keV, 700 keV, and 880 keV to implant N+ ions into GaAs substrates with an ion concentration of 3 1012 cm−2. The resulting material exhibited 110 fs carrier lifetime due to implantation-induced defects. Our photomixers were fabricated as metal-semiconductor-metal devices, placed at the feed point of a broadband antenna. Optoelectronic measurements were performed in the wavelength range between 350 nm and 950 nm. In comparison to their counterparts photomixers fabricated on low-temperature-grown GaAs the N+-implanted GaAs photomixers exhibit improvements on both the output power and responsivity. A maximal responsivity of above 100 mA/W was achieved and we did not observe any dependence of the mixer cut-off frequency on the bias voltage. These characteristics make N+-implanted GaAs the material of choice for efficient optoelectronic photomixers. [less ▲]

Detailed reference viewed: 96 (0 UL)
See detailNitrogen implanted GaAs for ultrafast photodetectors and photomixers
Mikulics, M.; Wolter, M. J.; Marso, Michel UL et al

in Proc. 5th Intern. Conf. Advanced Semicon. Dev. & Microsystems ASDAM’04 (2004)

Detailed reference viewed: 51 (0 UL)