References of "Spielmann, Malte"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailSingle-cell sequencing of human midbrain reveals glial activation and a Parkinson-specific neuronal state.
Smajic, Semra UL; Prada-Medina, Cesar A.; Landoulsi, Zied UL et al

in Brain : a journal of neurology (2022), 145(3), 964-978

Idiopathic Parkinson's disease is characterized by a progressive loss of dopaminergic neurons, but the exact disease etiology remains largely unknown. To date, Parkinson's disease research has mainly ... [more ▼]

Idiopathic Parkinson's disease is characterized by a progressive loss of dopaminergic neurons, but the exact disease etiology remains largely unknown. To date, Parkinson's disease research has mainly focused on nigral dopaminergic neurons, although recent studies suggest disease-related changes also in non-neuronal cells and in midbrain regions beyond the substantia nigra. While there is some evidence for glial involvement in Parkinson's disease, the molecular mechanisms remain poorly understood. The aim of this study was to characterize the contribution of all cell types of the midbrain to Parkinson's disease pathology by single-nuclei RNA sequencing and to assess the cell type-specific risk for Parkinson's disease employing the latest genome-wide association study. We profiled >41 000 single-nuclei transcriptomes of postmortem midbrain from six idiopathic Parkinson's disease patients and five age-/sex-matched controls. To validate our findings in a spatial context, we utilized immunolabeling of the same tissues. Moreover, we analyzed Parkinson's disease-associated risk enrichment in genes with cell type-specific expression patterns. We discovered a neuronal cell cluster characterized by CADPS2 overexpression and low TH levels, which was exclusively present in IPD midbrains. Validation analyses in laser-microdissected neurons suggest that this cluster represents dysfunctional dopaminergic neurons. With regard to glial cells, we observed an increase in nigral microglia in Parkinson's disease patients. Moreover, nigral idiopathic Parkinson's disease microglia were more amoeboid, indicating an activated state. We also discovered a reduction in idiopathic Parkinson's disease oligodendrocyte numbers with the remaining cells being characterized by a stress-induced upregulation of S100B. Parkinson's disease risk variants were associated with glia- and neuron-specific gene expression patterns in idiopathic Parkinson's disease cases. Furthermore, astrocytes and microglia presented idiopathic Parkinson's disease-specific cell proliferation and dysregulation of genes related to unfolded protein response and cytokine signaling. While reactive patient astrocytes showed CD44 overexpression, idiopathic Parkinson's disease-microglia revealed a pro-inflammatory trajectory characterized by elevated levels of IL1B, GPNMB, and HSP90AA1. Taken together, we generated the first single-nuclei RNA sequencing dataset from the idiopathic Parkinson's disease midbrain, which highlights a disease-specific neuronal cell cluster as well as 'pan-glial' activation as a central mechanism in the pathology of the movement disorder. This finding warrants further research into inflammatory signaling and immunomodulatory treatments in Parkinson's disease. [less ▲]

Detailed reference viewed: 47 (10 UL)
Full Text
Peer Reviewed
See detailParkin Deficiency Impairs Mitochondrial DNA Dynamics and Propagates Inflammation.
Wasner, Kobi; Smajic, Semra UL; Ghelfi, Jenny UL et al

in Movement disorders : official journal of the Movement Disorder Society (2022)

BACKGROUND: Mutations in the E3 ubiquitin ligase parkin cause autosomal recessive Parkinson's disease (PD). Together with PTEN-induced kinase 1 (PINK1), parkin regulates the clearance of dysfunctional ... [more ▼]

BACKGROUND: Mutations in the E3 ubiquitin ligase parkin cause autosomal recessive Parkinson's disease (PD). Together with PTEN-induced kinase 1 (PINK1), parkin regulates the clearance of dysfunctional mitochondria. New mitochondria are generated through an interplay of nuclear- and mitochondrial-encoded proteins, and recent studies suggest that parkin influences this process at both levels. In addition, parkin was shown to prevent mitochondrial membrane permeability, impeding mitochondrial DNA (mtDNA) escape and subsequent neuroinflammation. However, parkin's regulatory roles independent of mitophagy are not well described in patient-derived neurons. OBJECTIVES: We sought to investigate parkin's role in preventing neuronal mtDNA dyshomeostasis, release, and glial activation at the endogenous level. METHODS: We generated induced pluripotent stem cell (iPSC)-derived midbrain neurons from PD patients with parkin (PRKN) mutations and healthy controls. Live-cell imaging, proteomic, mtDNA integrity, and gene expression analyses were employed to investigate mitochondrial biogenesis and genome maintenance. To assess neuroinflammation, we performed single-nuclei RNA sequencing in postmortem tissue and quantified interleukin expression in mtDNA/lipopolysaccharides (LPS)-treated iPSC-derived neuron-microglia co-cultures. RESULTS: Neurons from patients with PRKN mutations revealed deficits in the mitochondrial biogenesis pathway, resulting in mtDNA dyshomeostasis. Moreover, the energy sensor sirtuin 1, which controls mitochondrial biogenesis and clearance, was downregulated in parkin-deficient cells. Linking mtDNA disintegration to neuroinflammation, in postmortem midbrain with PRKN mutations, we confirmed mtDNA dyshomeostasis and detected an upregulation of microglia overexpressing proinflammatory cytokines. Finally, parkin-deficient neuron-microglia co-cultures elicited an enhanced immune response when exposed to mtDNA/LPS. CONCLUSIONS: Our findings suggest that parkin coregulates mitophagy, mitochondrial biogenesis, and mtDNA maintenance pathways, thereby protecting midbrain neurons from neuroinflammation and degeneration. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. [less ▲]

Detailed reference viewed: 38 (3 UL)
Full Text
See detailSingle-cell sequencing of the human midbrain reveals glial activation and a neuronal state specific to Parkinson’s disease
Smajic, Semra UL; Prada-Medina, Cesar A.; Landoulsi, Zied UL et al

E-print/Working paper (2020)

Parkinson’s disease (PD) etiology is associated with genetic and environmental factors that lead to a loss of dopaminergic neurons. However, the functional interpretation of PD-associated risk variants ... [more ▼]

Parkinson’s disease (PD) etiology is associated with genetic and environmental factors that lead to a loss of dopaminergic neurons. However, the functional interpretation of PD-associated risk variants and how other midbrain cells contribute to this neurodegenerative process are poorly understood. Here, we profiled >41,000 single-nuclei transcriptomes of postmortem midbrain tissue from 6 idiopathic PD (IPD) patients and 5 matched controls. We show that PD-risk variants are associated with glia- and neuron-specific gene expression patterns. Furthermore, Microglia and astrocytes presented IPD-specific cell proliferation and dysregulation of genes related to unfolded protein response and cytokine signalling. IPD-microglia revealed a specific pro-inflammatory trajectory. Finally, we discovered a neuronal cell cluster exclusively present in IPD midbrains characterized by CADPS2 overexpression and a high proportion of cycling cells. We conclude that elevated CADPS2 expression is specific to dysfunctional dopaminergic neurons, which have lost their dopaminergic identity and unsuccessful attempt to re-enter the cell cycle. [less ▲]

Detailed reference viewed: 47 (6 UL)