References of "Solanki, Sourabh 50043129"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailShort-Packet Communication Assisted Reliable Control of UAV for Optimum Coverage Range
Solanki, Sourabh UL; Singh, Vibhum UL; Gautam, Sumit et al

in Short-Packet Communication Assisted Reliable Control of UAV for Optimum Coverage Range (in press)

The reliability of command and control (C2) operation of the UAV is one of the crucial aspects for the success of UAV applications beyond 5G wireless networks. In this paper, we focus on the short-packet ... [more ▼]

The reliability of command and control (C2) operation of the UAV is one of the crucial aspects for the success of UAV applications beyond 5G wireless networks. In this paper, we focus on the short-packet communication to maximize the coverage range of reliable UAV control. We quantify the reliability performance of the C2 transmission from a multi-antenna ground control station (GCS), which also leverages maximal-ratio transmission beamforming, by deriving the closed-form expression for the average block error rate (BLER). To obtain additional insights, we also derive the asymptotic expression of the average BLER in the high-transmit power regime and subsequently analyze the possible UAV configuration space to find the optimum altitude. Based on the derived average BLER, we formulate a joint optimization problem to maximize the range up to which a UAV can be reliably controlled from a GCS. The solution to this problem leads to the optimal resource allocation parameters including blocklength and transmit power while exploiting the vertical degrees of freedom for UAV placement. Finally, we present numerical and simulation results to corroborate the analysis and to provide various useful design insights. [less ▲]

Detailed reference viewed: 86 (18 UL)
Full Text
Peer Reviewed
See detailMEC-assisted Low Latency Communication for Autonomous Flight Control of 5G-Connected UAV
Solanki, Sourabh UL; Mahmood, Asad UL; Singh, Vibhum UL et al

in MEC-assisted Low Latency Communication for Autonomous Flight Control of 5G-Connected UAV (in press)

Proliferating applications of unmanned aerial vehicles (UAVs) impose new service requirements, leading to several challenges. One of the crucial challenges in this vein is to facilitate the autonomous ... [more ▼]

Proliferating applications of unmanned aerial vehicles (UAVs) impose new service requirements, leading to several challenges. One of the crucial challenges in this vein is to facilitate the autonomous navigation of UAVs. Concretely, the UAV needs to individually process the visual data and subsequently plan its trajectories. Since the UAV has limited onboard storage constraints, its computational capabilities are often restricted and it may not be viable to process the data locally for trajectory planning. Alternatively, the UAV can send the visual inputs to the ground controller which, in turn, feeds back the command and control signals to the UAV for its safe navigation. However, this process may introduce some delays, which is not desirable for autonomous UAVs’ safe and reliable navigation. Thus, it is essential to devise techniques and approaches that can potentially offer low-latency solutions for planning the UAV’s flight. To this end, this paper analyzes a multi-access edge computing aided UAV and aims to minimize the latency of the task processing. More specifically, we propose an offloading strategy for a UAV by optimally designing the offloading parameter, local computational resources, and altitude of the UAV. The numerical and simulation results are presented to offer various design insights, and the benefits of the proposed strategy are also illustrated in contrast to the other baseline approaches. [less ▲]

Detailed reference viewed: 118 (18 UL)
Full Text
Peer Reviewed
See detailOn the Performance of Cache-Free/Cache-Aided STBC-NOMA in Cognitive Hybrid Satellite-Terrestrial Networks
Singh, Vibhum UL; Solanki, Sourabh UL; Eappen, Geoffrey UL et al

in IEEE Wireless Communications Letters (2022), 11(12), 2655-2659

Future wireless networks pose several challenges such as high spectral efficiency, wide coverage massive connectivity, low receiver complexity, etc. To this end, this letter investigates an overlay based ... [more ▼]

Future wireless networks pose several challenges such as high spectral efficiency, wide coverage massive connectivity, low receiver complexity, etc. To this end, this letter investigates an overlay based cognitive hybrid satellite-terrestrial network (CHSTN) combining non-orthogonal multiple access (NOMA) and conventional Alamouti space-time block coding (STBC) techniques. Herein, a decode-and-forward based secondary terrestrial network cooperates with a primary satellite network for dynamic spectrum access. Further, for reliable content delivery and low latency requirements, wireless caching is employed, whereby the secondary network can store the most popular contents of the primary network. Considering the relevant heterogeneous fading channel models and the NOMA-based imperfect successive interference cancellation, we examine the performance of CHSTN for the cache-free (CF) STBC-NOMA and the cache-aided (CA) STBC-NOMA schemes. We assess the outage probability expressions for primary and secondary networks and further, highlight the corresponding achievable diversity orders. Indicatively, the proposed CF/CA STBC-NOMA schemes for CHSTN perform significantly better than the benchmark standalone NOMA and OMA schemes. [less ▲]

Detailed reference viewed: 81 (32 UL)
Full Text
Peer Reviewed
See detailEvolution of Non-Terrestrial Networks From 5G to 6G: A Survey
Azari, M. Mahdi; Solanki, Sourabh UL; Chatzinotas, Symeon UL et al

in IEEE Communications Surveys & Tutorials (2022), 24(4), 2633-2672

Non-terrestrial networks (NTNs) traditionally have certain limited applications. However, the recent technological advancements and manufacturing cost reduction opened up myriad applications of NTNs for ... [more ▼]

Non-terrestrial networks (NTNs) traditionally have certain limited applications. However, the recent technological advancements and manufacturing cost reduction opened up myriad applications of NTNs for 5G and beyond networks, especially when integrated into terrestrial networks (TNs). This article comprehensively surveys the evolution of NTNs highlighting their relevance to 5G networks and essentially, how it will play a pivotal role in the development of 6G ecosystem. We discuss important features of NTNs integration into TNs and the synergies by delving into the new range of services and use cases, various architectures, technological enablers, and higher layer aspects pertinent to NTNs integration. Moreover, we review the corresponding challenges arising from the technical peculiarities and the new approaches being adopted to develop efficient integrated ground-air-space (GAS) networks. Our survey further includes the major progress and outcomes from academic research as well as industrial efforts representing the main industrial trends, field trials, and prototyping towards the 6G networks. [less ▲]

Detailed reference viewed: 69 (13 UL)
Full Text
Peer Reviewed
See detailBoosting Quantum Battery-Based IoT Gadgets via RF-Enabled Energy Harvesting
Gautam, Sumit; Solanki, Sourabh UL; Sharma, Shree Krishna et al

in Sensors (2022), 22(14), 1-19

The search for a highly portable and efficient supply of energy to run small-scale wireless gadgets has captivated the human race for the past few years. As a part of this quest, the idea of realizing a ... [more ▼]

The search for a highly portable and efficient supply of energy to run small-scale wireless gadgets has captivated the human race for the past few years. As a part of this quest, the idea of realizing a Quantum battery (QB) seems promising. Like any other practically tractable system, the design of QBs also involve several critical challenges. The main problem in this context is to ensure a lossless environment pertaining to the closed-system design of the QB, which is extremely difficult to realize in practice. Herein, we model and optimize various aspects of a Radio-Frequency (RF) Energy Harvesting (EH)-assisted, QB-enabled Internet-of-Things (IoT) system. Several RF-EH modules (in the form of micro- or nano-meter-sized integrated circuits (ICs)) are placed in parallel at the IoT receiver device, and the overall correspondingly harvested energy helps the involved Quantum sources achieve the so-called quasi-stable state. Concretely, the Quantum sources absorb the energy of photons that are emitted by a photon-emitting device controlled by a micro-controller, which also manages the overall harvested energy from the RF-EH ICs. To investigate the considered framework, we first minimize the total transmit power under the constraints on overall harvested energy and the number of RF-EH ICs at the QB-enabled wireless IoT device. Next, we optimize the number of RF-EH ICs, subject to the constraints on total transmit power and overall harvested energy. Correspondingly, we obtain suitable analytical solutions to the above-mentioned problems, respectively, and also cross-validate them using a non-linear program solver. The effectiveness of the proposed technique is reported in the form of numerical results, which are both theoretical and simulations based, by taking a range of operating system parameters into account. [less ▲]

Detailed reference viewed: 119 (1 UL)
Full Text
Peer Reviewed
See detailTHz-Empowered UAVs in 6G: Opportunities, Challenges, and Trade-Offs
Azari, Mohammad Mahdi UL; Solanki, Sourabh UL; Chatzinotas, Symeon UL et al

in IEEE Communications Magazine (2022), 60(5), 24-30

Envisioned use cases of unmanned aerial vehicles (UAVs) impose new service requirements in terms of data rate, latency, and sensing accuracy, to name a few. If such requirements are satisfactorily met, it ... [more ▼]

Envisioned use cases of unmanned aerial vehicles (UAVs) impose new service requirements in terms of data rate, latency, and sensing accuracy, to name a few. If such requirements are satisfactorily met, it can create novel applications and enable highly reliable and harmonized integration of UAVs in the 6G network ecosystem. Towards this, terahertz (THz) bands are perceived as a prospective technological enabler for various improved functionalities such as ultra-high throughput and enhanced sensing capabilities. This paper focuses on THz-empowered UAVs with the following capabilities: communication, sensing, localization, imaging, and control. We review the potential opportunities and use cases of THz-empowered UAVs, corresponding novel design challenges, and resulting trade-offs. Furthermore, we overview recent advances in UAV deployments regulations, THz standardization, and health aspects related to THz bands. Finally, we take UAV to UAV (U2U) communication as a case-study to provide numerical insights into the impact of various system design parameters and environment factors. [less ▲]

Detailed reference viewed: 119 (25 UL)
Full Text
Peer Reviewed
See detailOn the Performance of IRS-Aided UAV Networks With NOMA
Solanki, Sourabh UL; Park, Junhee; Lee, Inkyu

in IEEE Transactions on Vehicular Technology (2022), 71(8), 9038-9043

This paper investigates the performance of an intelligent reflective surface (IRS) assisted non-orthogonal multiple access (NOMA) system, where the IRS is mounted on an unmanned aerial vehicle (UAV) to ... [more ▼]

This paper investigates the performance of an intelligent reflective surface (IRS) assisted non-orthogonal multiple access (NOMA) system, where the IRS is mounted on an unmanned aerial vehicle (UAV) to assist the transmissions from a base station (BS). The BS utilizes the UAV as a relay to serve multiple user equipments (UEs) on the ground. In addition to the IRS relaying links, we also incorporate direct non line-of-sight links between the BS and UEs.We derive the outage probability for this system configuration. Moreover, we obtain a bound of the ergodic spectral efficiency to extract various useful insights. Furthermore, we also compare the performance of the proposed system design against the baseline scheme. Finally, we present numerical results to highlight the benefits of the proposed IRS-aided UAV relaying system and the accuracy of the derived analytical results. [less ▲]

Detailed reference viewed: 35 (6 UL)
Full Text
Peer Reviewed
See detailAmbient Backscatter Assisted Co-Existence in Aerial-IRS Wireless Networks
Solanki, Sourabh UL; Gautam, Sumit; Sharma, Shree Krishna et al

in IEEE Open Journal of the Communications Society (2022), 3

Ambient backscatter communication (AmBC) is an emerging technology that has the potential to offer spectral- and energy-efficient solutions for the next generation wireless communications networks ... [more ▼]

Ambient backscatter communication (AmBC) is an emerging technology that has the potential to offer spectral- and energy-efficient solutions for the next generation wireless communications networks, especially for the Internet of Things (IoT). Intelligent reflecting surfaces (IRSs) are also perceived to be an integral part of the beyond 5G systems to complement the traditional relaying scheme. To this end, this paper proposes a novel system design that enables the co-existence of a backscattering secondary system with the legacy primary system. This co-existence is primarily driven by leveraging the AmBC technique in IRS-assisted unmanned aerial vehicle (UAV) networks. More specifically, an aerial-IRS mounted on a UAV is considered to be employed for cooperatively relaying the transmitted signal from a terrestrial primary source node to a user equipment on the ground. Meanwhile, capitalizing on the AmBC technology, a backscatter capable terrestrial secondary node transmits its information to a terrestrial secondary receiver by modulating and backscattering the ambient relayed radio frequency signals from the UAV-IRS. We comprehensively analyze the performance of the proposed design framework with co-existing systems by deriving the outage probability and ergodic spectral efficiency expressions. Moreover, we also investigate the asymptotic behaviour of outage performance in high transmit power regimes for both primary and secondary systems. Importantly, we analyze the performance of the primary system by considering two different scenarios i.e., optimal phase shifts design and random phase shifting at IRS. Finally, based on the analytical performance assessment, we present numerical results to provide various useful insights and also provide simulation results to corroborate the derived theoretical results. [less ▲]

Detailed reference viewed: 108 (27 UL)
Full Text
Peer Reviewed
See detailSymbiotic Radio based Spectrum Sharing in Cooperative UAV-IRS Wireless Networks
Solanki, Sourabh UL; Gautam, Sumit; Singh, Vibhum UL et al

in Proceedings of IEEE VTC2022-Spring (2022)

Ambient backscatter communication (AmBC) technology can potentially offer spectral- and energy-efficient solutions for future wireless systems. This paper proposes a novel design to facilitate the ... [more ▼]

Ambient backscatter communication (AmBC) technology can potentially offer spectral- and energy-efficient solutions for future wireless systems. This paper proposes a novel design to facilitate the spectrum sharing between a secondary system and a primary system based on the AmBC technique in intelligent reflective surface (IRS)-assisted unmanned aerial vehicle (UAV) networks. In particular, an IRS-aided UAV cooperatively relays the transmission from a terrestrial primary source node to a user equipment on the ground. On the other hand, leveraging on the AmBC technology, a terrestrial secondary node transmits its information to a terrestrial secondary receiver by modulating and backscattering the ambient relayed radio frequency (RF) signals from the UAV-IRS. The performance of such a system setup is analyzed by deriving the expressions of outage probability and ergodic spectral efficiency. Finally, we present the numerical results to provide useful insights into the system design and also validate the derived theoretical results using Monte Carlo simulations. [less ▲]

Detailed reference viewed: 122 (32 UL)
Full Text
Peer Reviewed
See detailHybrid Active-and-Passive Relaying Model for 6G-IoT Greencom Networks with SWIPT
Gautam, Sumit UL; Solanki, Sourabh UL; Sharma, Shree Krishna UL et al

in Sensors (2021), 21

In order to support a massive number of resource-constrained Internet-of-Things (IoT) devices and machine-type devices, it is crucial to design a future beyond 5G/6G wireless networks in an energy ... [more ▼]

In order to support a massive number of resource-constrained Internet-of-Things (IoT) devices and machine-type devices, it is crucial to design a future beyond 5G/6G wireless networks in an energy-efficient manner while incorporating suitable network coverage expansion methodologies. To this end, this paper proposes a novel two-hop hybrid active-and-passive relaying scheme to facilitate simultaneous wireless information and power transfer (SWIPT) considering both time-switching (TS) and power-splitting (PS) receiver architectures, while dynamically modelling the involved dual-hop time-period (TP) metric. An optimization problem is formulated to jointly optimize the throughput, harvested energy, and transmit power of a SWIPT-enabled system with the proposed hybrid scheme. In this regard, we provide two distinct ways to obtain suitable solutions based on the Lagrange dual technique and Dinkelbach method assisted convex programming, respectively, where both the approaches yield an appreciable solution within polynomial computational time. The experimental results are obtained by directly solving the primal problem using a non-linear optimizer. Our numerical results in terms of weighted utility function show the superior performance of the proposed hybrid scheme over passive repeater-only and active relay-only schemes, while also depicting their individual performance benefits over the corresponding benchmark SWIPT systems with the fixed-TP. [less ▲]

Detailed reference viewed: 107 (11 UL)
Full Text
Peer Reviewed
See detailOn the Secrecy-Reliability Performance Trade-off for NOMA-enabled 5G mmWave Networks
Solanki, Sourabh UL; Gurjar, Devendra S.; Sharma, Pankaj K. et al

in 2021 IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE PIMRC 2021) (2021)

The evolution of 5G wireless networks poses significant research challenges such as securing the user data, maintaining certain latency and reliability requirements etc. However, it can be challenging to ... [more ▼]

The evolution of 5G wireless networks poses significant research challenges such as securing the user data, maintaining certain latency and reliability requirements etc. However, it can be challenging to simultaneously meet these performance requisites, which may lead to resort to a trade-off among different metrics. This paper investigates the secrecy-reliability performance trade-off (SRPT) for non-orthogonal multiple access (NOMA)-based millimeter wave (mmWave) networks. Herein, we consider two end-users, namely primary and secondary, which are served by an mmWave base station using downlink NOMA. Besides, a passive eavesdropper lying in the vicinity of these end-users attempts to intercept their legitimate message signals. For this set-up, we derive the closed-form expressions of the outage probability (OP) of a targeted end-user and intercept probability (IP) of the eavesdropper to analyze the SRPT of the system. We further propose a low-complexity average channel state information (CSI)-based power allocation strategy to improve the reliability of a targeted user while maintaining its information secrecy. Moreover, we obtain the condition under which NOMA guarantees superior secrecy performance than that of orthogonal multiple access (OMA) scheme. We corroborate our theoretical analysis via simulation results presented in terms of IP and OP. [less ▲]

Detailed reference viewed: 112 (31 UL)