References of "Simonovic, N."
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailRumpling of LiF(001) surface from fast atom diffraction
Schueller, A.; Wethekam, S.; Blauth, D. et al

in Physical Review. A (2010), 82(6), 062902

Quantum diffraction of fast atoms scattered from the topmost layer of surfaces under grazing angles of incidence can be employed for the analysis of detailed structural properties of insulator surfaces ... [more ▼]

Quantum diffraction of fast atoms scattered from the topmost layer of surfaces under grazing angles of incidence can be employed for the analysis of detailed structural properties of insulator surfaces. From comparison of measured and calculated diffraction patterns we deduce the rumpling of the topmost surface layer of LiF(001) (i.e., an inward shift of Li(+) ions with respect to F(-) ions). The effect of thermal vibrations on the measurement of rumpling is accounted for by ab initio calculations of the mean-square vibrational amplitudes of surface ions. At room temperature this leads to a reduction of the apparent rumpling by 0.008 angstrom. We then obtain a rumpling of ( 0.05 +/- 0.04) angstrom, which improves its accuracy achieved in previous work. [less ▲]

Detailed reference viewed: 120 (2 UL)
Full Text
Peer Reviewed
See detailFast-Atom Diffraction at Surfaces
Aigner, F.; Simonovic, N.; Solleder, B. et al

in Journal of Physics: Conference Series (2009), 194

Fast helium atoms diffracted at alkali-halide surfaces under grazing angles of incidence exhibit intriguing diffraction patterns. The persistence of quantum coherence is remarkable, considering high ... [more ▼]

Fast helium atoms diffracted at alkali-halide surfaces under grazing angles of incidence exhibit intriguing diffraction patterns. The persistence of quantum coherence is remarkable, considering high surface temperatures and high (keV) kinetic energies of the incident atoms. Dissipative and decohering effects such as the momentum transfer between the incident helium atoms and the surface influence the diffraction patterns and control the width of the diffraction peaks, but they are weak enough to preserve the visibility of the diffration patterns. We perform an ab initio simulation of the quantum diffraction of fast helium beams at a LiF (100) surface in the < 110 > direction. Our results agree well with recent experimental diffraction data. [less ▲]

Detailed reference viewed: 121 (0 UL)
Full Text
Peer Reviewed
See detailSuppression of Decoherence in Fast-Atom Diffraction at Surfaces
Aigner, F.; Simonovic, N.; Solleder, B. et al

in Physical Review Letters (2008), 101(25),

Scattering of fast neutral atoms with keV kinetic energies at alkali-halide surfaces under grazing angles displays intriguing diffraction patterns. The surprisingly strong persistence of quantum coherence ... [more ▼]

Scattering of fast neutral atoms with keV kinetic energies at alkali-halide surfaces under grazing angles displays intriguing diffraction patterns. The surprisingly strong persistence of quantum coherence despite the impulsive interaction with an environment at solid state density and elevated temperatures raises fundamental questions such as to the suppression of decoherence and of the quantum-to-classical crossover. We present an ab initio simulation of the quantum diffraction of fast helium beams at a LiF (100) surface in the < 110 > direction and compare with recent experimental diffraction data. From the quantitative reconstruction of diffraction images the vertical LiF-surface reconstruction, or buckling, can be determined. [less ▲]

Detailed reference viewed: 103 (3 UL)
Full Text
Peer Reviewed
See detailInfluence of Inelastic Processes on Fast-Atom-Surface Diffraction
Aigner, F.; Simonovic, N.; Solleder, B. et al

in Journal of Physics: Conference Series (2008), 133

Diffraction of fast helium atoms at alkali-halide surfaces under grazing angles of incidence shows intriguing diffraction patterns. The persistence of quantum coherence is remarkably strong, even though ... [more ▼]

Diffraction of fast helium atoms at alkali-halide surfaces under grazing angles of incidence shows intriguing diffraction patterns. The persistence of quantum coherence is remarkably strong, even though high surface temperatures and high (keV) kinetic energies of the incident atoms would strongly suggest the dominance of dissipative and decohering processes. The main source of decoherence is the excitation or absorption of surface vibrations upon impact. The momentum transfer between the surface and the incident helium atom depends on the amplitude of the thermal vibrations of the surface atoms and the energy of the incident particle. We present an ab initio simulation of the quantum diffraction of fast helium beams at a LiF (100) surface in the < 110 > direction, and compare with recent experimental diffraction data. [less ▲]

Detailed reference viewed: 118 (2 UL)