References of "Shtansky, Dmitry V."
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailDifferent concepts for creating antibacterial yet biocompatible surfaces: adding bactericidal element, grafting therapeutic agent through COOH plasma polymer and their combination
Permyakova, Elizaveta S.; Manakhov, Anton M.; Kiryukhantsev-Korneev, Philipp V. et al

in Applied Surface Science (2021)

Antibacterial coatings have become a rapidly developing field of research, strongly stimulated by the increasing urgency of identifying alternatives to the traditional administration of antibiotics. Such ... [more ▼]

Antibacterial coatings have become a rapidly developing field of research, strongly stimulated by the increasing urgency of identifying alternatives to the traditional administration of antibiotics. Such coatings can be deposited onto implants and other medical devices and prevent the inflammations caused by hospital-acquired infections. Nevertheless, the design of antibacterial yet biocompatible and bioactive surfaces is a challenge that biological community has faced for many years but the “materials of dream” have not yet been developed. In this work, the biocompatible yet antibacterial multi-layered films were prepared by a combination of magnetron sputtering (TiCaPCON film), ion implantation (Ag-doped TiCaPCON film), plasma polymerization (COOH layer), and final immobilization of gentamicin (GM) and heparin (Hepa) molecules. The layer chemistry was thoroughly investigated by means of FTIR and X-ray photoelectron spectroscopies. It was found that the immobilization of therapeutic components occurs throughout the entire thickness of the plasma-deposited COOH layer. The influence of each type of bactericide (Ag+ ions, GM, and Hepa) on antibacterial activity and cell proliferation was analyzed. Our films were cytocompatible and demonstrated superior bactericidal efficiency toward antibiotic-resistant bacterial E. coli K261 strain. Increased toxicity while using the combination of Ag nanoparticles and COOH plasma polymer is discussed. [less ▲]

Detailed reference viewed: 45 (1 UL)
Full Text
Peer Reviewed
See detailPlasma-Coated Polycaprolactone Nanofibers with Covalently Bonded Platelet-Rich Plasma Enhance Adhesion and Growth of Human Fibroblasts.
Miroshnichenko, Svetlana; Timofeeva, Valeriia; Permykova, Elizaveta et al

in Nanomaterials (2019), 9(4),

Biodegradable nanofibers are extensively employed in different areas of biology and medicine, particularly in tissue engineering. The electrospun polycaprolactone (PCL) nanofibers are attracting growing ... [more ▼]

Biodegradable nanofibers are extensively employed in different areas of biology and medicine, particularly in tissue engineering. The electrospun polycaprolactone (PCL) nanofibers are attracting growing interest due to their good mechanical properties and a low-cost structure similar to the extracellular matrix. However, the unmodified PCL nanofibers exhibit an inert surface, hindering cell adhesion and negatively affecting their further fate. The employment of PCL nanofibrous scaffolds for wound healing requires a certain modification of the PCL surface. In this work, the morphology of PCL nanofibers is optimized by the careful tuning of electrospinning parameters. It is shown that the modification of the PCL nanofibers with the COOH plasma polymers and the subsequent binding of NH(2) groups of protein molecules is a rather simple and technologically accessible procedure allowing the adhesion, early spreading, and growth of human fibroblasts to be boosted. The behavior of fibroblasts on the modified PCL surface was found to be very different when compared to the previously studied cultivation of mesenchymal stem cells on the PCL nanofibrous meshes. It is demonstrated by X-ray photoelectron spectroscopy (XPS) that the freeze-thawed platelet-rich plasma (PRP) immobilization can be performed via covalent and non-covalent bonding and that it does not affect biological activity. The covalently bound components of PRP considerably reduce the fibroblast apoptosis and increase the cell proliferation in comparison to the unmodified PCL nanofibers or the PCL nanofibers with non-covalent bonding of PRP. The reported research findings reveal the potential of PCL matrices for application in tissue engineering, while the plasma modification with COOH groups and their subsequent covalent binding with proteins expand this potential even further. The use of such matrices with covalently immobilized PRP for wound healing leads to prolonged biological activity of the immobilized molecules and protects these biomolecules from the aggressive media of the wound. [less ▲]

Detailed reference viewed: 58 (4 UL)