References of "Sengupta, Anupam 50031380"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailBistability in oxidative stress response determines the migration behavior of phytoplankton in turbulence
Carrara, Francesco; Sengupta, Anupam UL; Behrendt, Lars et al

in Proceedings of the National Academy of Sciences of the United States of America (2021), 118(5), 2005944118

Turbulence is an important determinant of phytoplankton physiology, often leading to cell stress and damage. Turbulence affects phytoplankton migration both by transporting cells and by triggering ... [more ▼]

Turbulence is an important determinant of phytoplankton physiology, often leading to cell stress and damage. Turbulence affects phytoplankton migration both by transporting cells and by triggering switches in migratory behavior, whereby vertically migrating cells can actively invert their direction of migration upon exposure to turbulent cues. However, a mechanistic link between single-cell physiology and vertical migration of phytoplankton in turbulence is currently missing. Here, by combining physiological and behavioral experiments with a mathematical model of stress accumulation and dissipation, we show that the mechanism responsible for the switch in the direction of migration in the marine raphidophyte Heterosigma akashiwo is the integration of reactive oxygen species (ROS) signaling generated by turbulent cues. Within timescales as short as tens of seconds, the emergent downward-migrating subpopulation exhibited a twofold increase in ROS, an indicator of stress, 15% lower photosynthetic efficiency, and 35% lower growth rate over multiple generations compared to the upward-migrating subpopulation. The origin of the behavioral split as a result of a bistable oxidative stress response is corroborated by the observation that exposure of cells to exogenous stressors (H2O2, UV-A radiation, or high irradiance), in lieu of turbulence, caused comparable ROS accumulation and an equivalent split into the two subpopulations. By providing a mechanistic link between the single-cell mechanics of swimming and physiology on the one side and the emergent population-scale migratory response and impact on fitness on the other, the ROS-mediated early warning response we discovered contributes to our understanding of phytoplankton community composition in future ocean conditions. [less ▲]

Detailed reference viewed: 51 (9 UL)
Full Text
Peer Reviewed
See detailTime dependent lyotropic chromonic textures in PDMS-based microfluidic confinements
Sharma, Anshul; Ong, Irvine UL; Sengupta, Anupam UL

in Crystals (2021), 11(1),

Nematic and columnar phases of lyotropic chromonic liquid crystals (LCLCs) have been long studiedfor their fundamental and applied prospects in material science and medical diagnostics. LCLC ... [more ▼]

Nematic and columnar phases of lyotropic chromonic liquid crystals (LCLCs) have been long studiedfor their fundamental and applied prospects in material science and medical diagnostics. LCLC phasesrepresent different self-assembled states of disc-shaped molecules, held together by noncovalentinteractions that lead to highly sensitive concentration and temperature dependent properties. Yet,microscale insights into confined LCLCs, specifically in the context of confinement geometry andsurface properties, are lacking. Here, we report the emergence of time dependent textures in staticdisodium chromoglycate (DSCG) solutions, confined in PDMS-based microfluidic devices. We use acombination of soft lithography, surface characterization and polarized optical imaging to generateand analyze the confinement-induced LCLC textures, and demonstrate that over time, herringboneand spherulite textures emerge due to spontaneous nematic (N) to columnar M-phase transition,propagating from the LCLC-PDMS interface into the LCLC bulk. By varying the confinementgeometry, anchoring conditions and the initial DSCG concentration, we can systematically tune thetemporal dynamics of the N to M-phase transition and textural behaviour of the confined LCLC. Sincestatic molecular states register the initial conditions for LC flows, the time dependent boundary andbulk conditions reported here suggest that the local surface-mediated dynamics could be central inunderstanding LCLC flows, and in turn, the associated transport properties of this versatile material. [less ▲]

Detailed reference viewed: 23 (2 UL)
Full Text
Peer Reviewed
See detailTime dependent lyotropic chromonic textures in PDMS-based microfluidic confinements
Sharma, Anshul; Ong, Irvine UL; Sengupta, Anupam UL

in Crystals (2021), 11(1), 35

Nematic and columnar phases of lyotropic chromonic liquid crystals (LCLCs) have been long studied for their fundamental and applied prospects in material science and medical diagnostics. LCLC phases ... [more ▼]

Nematic and columnar phases of lyotropic chromonic liquid crystals (LCLCs) have been long studied for their fundamental and applied prospects in material science and medical diagnostics. LCLC phases represent different self-assembled states of disc-shaped molecules, held together by noncovalent interactions that lead to highly sensitive concentration and temperature dependent properties. Yet, microscale insights into confined LCLCs, specifically in the context of confinement geometry and surface properties, are lacking. Here, we report the emergence of time dependent textures in static disodium cromoglycate (DSCG) solutions, confined in PDMS-based microfluidic devices. We use a combination of soft lithography, surface characterization, and polarized optical imaging to generate and analyze the confinement-induced LCLC textures and demonstrate that over time, herringbone and spherulite textures emerge due to spontaneous nematic (N) to columnar M-phase transition, propagating from the LCLC-PDMS interface into the LCLC bulk. By varying the confinement geometry, anchoring conditions, and the initial DSCG concentration, we can systematically tune the temporal dynamics of the N- to M-phase transition and textural behavior of the confined LCLC. Overall, the time taken to change from nematic to the characteristic M-phase textures decreased as the confinement aspect ratio (width/depth) increased. For a given aspect ratio, the transition to the M-phase was generally faster in degenerate planar confinements, relative to the transition in homeotropic confinements. Since the static molecular states register the initial conditions for LC flows, the time dependent textures reported here suggest that the surface and confinement effects—even under static conditions—could be central in understanding the flow behavior of LCLCs and the associated transport properties of this versatile materia [less ▲]

Detailed reference viewed: 23 (5 UL)
Full Text
See detailBistability in oxidative stress response determines the migration behavior of phytoplankton in turbulence
Carrara, Francesco; Sengupta, Anupam UL; Behrendt, Lars et al

in bioRxiv (2020)

Turbulence is an important determinant of phytoplankton physiology, often leading to cell stress and damage. Turbulence affects phytoplankton migration, both by transporting cells and by triggering ... [more ▼]

Turbulence is an important determinant of phytoplankton physiology, often leading to cell stress and damage. Turbulence affects phytoplankton migration, both by transporting cells and by triggering switches in migratory behavior, whereby vertically migrating cells can invert their direction of migration upon exposure to turbulent cues. However, a mechanistic link between single-cell physiology and vertical migration of phytoplankton in turbulence is currently missing. Here, by combining physiological and behavioral experimentswith a mathematical model of stress accumulation and dissipation, we show that the mechanism responsible for the switch in the direction of migration in the marine raphidophyte Heterosigma akashiwo is the integration of reactive oxygen species (ROS) signaling generated by turbulent cues. Within timescales as short as tens of seconds, the emergent downward-migrating subpopulation exhibited a two-fold increase of ROS, an indicator of stress, 15% lower photosynthetic efficiency, and 35% lower growth rate over multiple generations compared to the upward-migrating subpopulation. The origin of the behavioral split in a bistable oxidative stress response is corroborated by the observation that exposure of cells to exogenous stressors (H2O2, UV-A radiation or high irradiance), in lieu of turbulence, caused comparable ROS accumulation and an equivalent split into the two subpopulations. By providing a mechanistic link between single-cell physiology, population-scale migration and fitness, these results contribute to our understanding of phytoplankton community composition in future ocean conditions. [less ▲]

Detailed reference viewed: 28 (1 UL)
Full Text
Peer Reviewed
See detailMicrobial Active Matter: A Topological Framework
Sengupta, Anupam UL

in Frontiers in Physics (2020), 8(184),

Topology transcends boundaries that conventionally delineate physical, biological, and engineering sciences. Our ability to mathematically describe topology, combined with recent access to precision ... [more ▼]

Topology transcends boundaries that conventionally delineate physical, biological, and engineering sciences. Our ability to mathematically describe topology, combined with recent access to precision tracking and manipulation approaches, has triggered a fresh appreciation of topological ramifications in biological systems. Microbial ecosystems, a classic example of living matter, offer a rich test bed for exploring the role of topological defects in shaping community compositions, structure, and functions spanning orders in length and time scales. Microbial activity—characteristic of such structured, out-of-equilibrium systems—triggers emergent processes that endow evolutionary and ecological benefits to microbial communities. The scene stealer of this developing cross-disciplinary field of research is the topological defects: singularities that nucleate due to spontaneous symmetry breaking within the microbial system or within the surrounding material field. The interplay of geometry, order, and topology elicit novel, if not unexpected dynamics that are at the heart of active and emergent processes in such living systems. In this short review, I have put together a summary of the key recent advances that highlight the interface of active liquid crystal physics and the physical ecology of microbes; and combined it with original data from experiments on sessile species as a case to demonstrate how this interface offers a biophysical framework that could help to decode and harness active microbial processes in true ecological settings. Topology and its functional manifestations—a crucial and well-timed topic—offer a rich opportunity for both experimentalists and theoreticians willing to take up an exciting journey across scales and disciplines. [less ▲]

Detailed reference viewed: 47 (1 UL)
Full Text
Peer Reviewed
See detailMono-to-multilayer transition in growing bacterial colonies
You, Zhihong; Pearce, Daniel J. G.; Sengupta, Anupam UL et al

in Physical Review Letters (2019), 123(17-25),

The transition from monolayers to multilayered structures in bacterial colonies is a fundamental step in biofilm development. Observed across different morphotypes and species, this transition is ... [more ▼]

The transition from monolayers to multilayered structures in bacterial colonies is a fundamental step in biofilm development. Observed across different morphotypes and species, this transition is triggered within freely growing bacterial microcolonies comprising a few hundred cells. Using a combination of numerical simulations and analytical modeling, here we demonstrate that this transition originates from the competition between growth-induced in-plane active stresses and vertical restoring forces, due to the cell-substrate interactions. Using a simple chainlike colony of laterally confined cells, we show that the transition sets when individual cells become unstable to rotations; thus it is localized and mechanically deterministic. Asynchronous cell division renders the process stochastic, so that all the critical parameters that control the onset of the transition are continuously distributed random variables. Here we demonstrate that the occurrence of the first division in the colony can be approximated as a Poisson process in the limit of large cell numbers. This allows us to approximately calculate the probability distribution function of the position and time associated with the first extrusion. The rate of such a Poisson process can be identified as the order parameter of the transition, thus highlighting its mixed deterministic-stochastic nature. [less ▲]

Detailed reference viewed: 45 (1 UL)
Full Text
Peer Reviewed
See detailEmergent biaxiality in nematic microflows illuminated by a laser beam
Eichler, J-C.; Skutnik, R.A.; Sengupta, Anupam UL et al

in Molecular Physics (2019), 117(23-24), 3715-3733

Anisotropic fluids (e.g. liquid crystals) offer a remarkable promise as optofluidic materials owing to the directional, tunable, and coupled interactions between the material, flow, and the optical fields ... [more ▼]

Anisotropic fluids (e.g. liquid crystals) offer a remarkable promise as optofluidic materials owing to the directional, tunable, and coupled interactions between the material, flow, and the optical fields. Here we present a comprehensive in silico treatment of this anisotropic interaction by performing nonequilibrium molecular dynamics simulations. We quantify the response of a nematic liquid crystal (NLC) undergoing a Poiseuille flow in the Stokes regime, while being illuminated by a laser beam incident perpendicular to the flow direction. We adopt a minimalistic model to capture the interactions, accounting for two features: first, the laser heats up the NLC locally; and second, the laser polarises the NLC and exerts an optical torque that tends to reorient molecules of the nematic phase. Because of this reorientation the liquid crystal exhibits small regions of biaxiality, where the nematic director is one symmetry axis and the axis of rotation for the reorientation of the molecules is the other one. We find that the relative strength of the viscous and the optical torques mediates the flow-induced response of the biaxial regions, thereby tuning the emergence, shape and location of the regions of enhanced biaxiality. The mechanistic framework presented here promises experimentally tractable routes toward novel optofluidic applications based on material-flow-light interactions. [less ▲]

Detailed reference viewed: 46 (5 UL)
Full Text
Peer Reviewed
See detailDark aerobic sulfide oxidation by anoxygenic phototrophs in anoxic waters of lake Cadagno
Sengupta, Anupam UL

in Environmental Microbiology (2019)

Anoxygenic phototrophic sulfide oxidation by green and purple sulfur bacteria (PSB) plays a key role in sulfide removal from anoxic shallow sediments and stratified waters. Although some PSB can also ... [more ▼]

Anoxygenic phototrophic sulfide oxidation by green and purple sulfur bacteria (PSB) plays a key role in sulfide removal from anoxic shallow sediments and stratified waters. Although some PSB can also oxidize sulfide with nitrate and oxygen, little is known about the prevalence of this chemolithotrophic lifestyle in the environment. In this study, we investigated the role of these phototrophs in light‐independent sulfide removal in the chemocline of Lake Cadagno. Our temporally resolved, high‐resolution chemical profiles indicated that dark sulfide oxidation was coupled to high oxygen consumption rates of ~9 μM O2·h‐1. Single‐cell analyses of lake water incubated with 13CO2 in the dark revealed that Chromatium okenii was to a large extent responsible for aerobic sulfide oxidation and it accounted for up to 40 % of total dark carbon fixation. The genome of Chr. okenii reconstructed from the Lake Cadagno metagenome confirms its capacity for microaerophilic growth and provides further insights into its metabolic capabilities. Moreover, our genomic and single‐cell data indicated that other PSB grow microaerobically in these apparently anoxic waters. Altogether, our observations suggest that aerobic respiration may not only play an underappreciated role in anoxic environments, but also that organisms typically considered strict anaerobes may be involved. [less ▲]

Detailed reference viewed: 119 (16 UL)
Full Text
Peer Reviewed
See detailGeometry and Mechanics of Microdomains in Growing Bacterial Colonies
Sengupta, Anupam UL

in Physical Review. X (2018), 8

Detailed reference viewed: 123 (11 UL)
Full Text
See detailMono-to-multilayer transition in growing bacterial colonies
Sengupta, Anupam UL

E-print/Working paper (2018)

The transition from monolayers to multilayered structures in bacterial colonies is a fundamental step in biofilm development. Observed across different morphotypes and species, this transition is ... [more ▼]

The transition from monolayers to multilayered structures in bacterial colonies is a fundamental step in biofilm development. Observed across different morphotypes and species, this transition is triggered within freely growing bacterial microcolonies comprising a few hundred cells. Using a combination of numerical simulations and analytical modeling, here we demonstrate that this transition originates from the competition between growth-induced in-plane active stresses and vertical restoring forces, due to the cell-substrate interactions. Using a simple chain-like colony of laterally confined cells, we show that the transition is triggered by the mechanical instability of individual cells, thus it is localized and mechanically deterministic. Asynchronous cell division renders the process stochastic, so that all the critical parameters that control the onset of the transition are continuously distributed random variables. Upon modeling cell division as a Poisson process, we can approximately calculate the probability distribution function of the position and time associated with the first extrusion. The rate of such a Poisson process can be identified as the order parameter of the transition, thus highlighting its mixed deterministic/stochastic nature. [less ▲]

Detailed reference viewed: 84 (12 UL)