![]() ; ; et al in IET Communications (2021), 15(12), 1606-1619 Hybrid processing in millimeter wave (mmWave) communication has been proposed as a solution to reduce the cost and energy consumption by reducing the number of radio-frequency (RF) chains. However, the ... [more ▼] Hybrid processing in millimeter wave (mmWave) communication has been proposed as a solution to reduce the cost and energy consumption by reducing the number of radio-frequency (RF) chains. However, the impact of the inevitable residual transceiver hardware impairments (RTHIs), including the residual additive transceiver hardware impairments (RATHIs) and the amplified thermal noise (ATN), has not been sufficiently studied in mmWave hybrid processing. In this work, the hybrid precoder and combiner are designed, which include both digital and analog processing by taking into account the RATHIs and the ATN. In particular, a thorough study is provided to shed light on the degradation of the spectral efficiency (SE) of the practical system. The outcomes show the steady degradation of the performance by the ATN across all SNR values, which becomes increasingly critical for higher values of its variance. Furthermore, it is shown that RATHIs result in degradation of the system only in the high SNR regime. Hence, their impact in mmWave system operating at low SNRs might be negligible. Moreover, an increase concerning the number of streams differentiates the impact between the transmit and receive RATHIs with the latter having a more severe effect. [less ▲] Detailed reference viewed: 41 (2 UL)![]() ; ; et al in IEEE Transactions on Communications (2018), 66(5), 1955-1969 Detailed reference viewed: 221 (9 UL)![]() Vuppala, Satyanarayana ![]() ![]() in 2018 9th Advanced Satellite Multimedia Systems Conference and the 15th Signal Processing for Space Communications Workshop (ASMS/SPSC) (2018) The application of linear precoding at the gateway side enables broadband multibeam satellite systems to use more aggressive frequency reuse patterns increasing the overall capacity of future High ... [more ▼] The application of linear precoding at the gateway side enables broadband multibeam satellite systems to use more aggressive frequency reuse patterns increasing the overall capacity of future High Throughput Satellites (HTS). However, although some previous works about precoding consider imperfect CSIT (Chanel State Information at the Transmitter) adding some CSI estimation errors, that is not the main cause of CSI degradation. In practice, receivers can only detect and estimate a few coefficients of the CSI vector being the other nullified, replaced by zeros. This introduces errors in the SINR calculation by the gateway that lead to the assignment of Modulation and Coding Schemes (MCS) over the decoding possibilities of the users, increasing the rate of erroneous frames. In this work, the errors in the SINR calculation caused by the nullification of the CSI are analyzing statistically and geographically using a radiation diagram of 245 beams over Europe. Furthermore, a solution based on a link adaptation algorithm with a per user adaptive margin is proposed, helping to achieve the QEF (Quasi-error Free) target of DVB-S2X systems. [less ▲] Detailed reference viewed: 43 (0 UL) |
||