References of "Schwiegelshohn, Uwe"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailOnline Bi-Objective Scheduling for IaaS Clouds Ensuring Quality of Service
Tchernykh, Andrei; Lozano, Luz; Schwiegelshohn, Uwe et al

in Journal of Grid Computing (2016), 14

This paper focuses on a bi-objective experimental evaluation of online scheduling in the Infrastructure as a Service model of Cloud computing regarding income and power consumption objectives. In this ... [more ▼]

This paper focuses on a bi-objective experimental evaluation of online scheduling in the Infrastructure as a Service model of Cloud computing regarding income and power consumption objectives. In this model, customers have the choice between different service levels. Each service level is associated with a price per unit of job execution time, and a slack factor that determines the maximal time span to deliver the requested amount of computing resources. The system, via the scheduling algorithms, is responsible to guarantee the corresponding quality of service for all accepted jobs. Since we do not consider any optimistic scheduling approach, a job cannot be accepted if its service guarantee will not be observed assuming that all accepted jobs receive the requested resources. In this article, we analyze several scheduling algorithms with different cloud configurations and workloads, considering the maximization of the provider income and minimization of the total power consumption of a schedule. We distinguish algorithms depending on the type and amount of information they require: knowledge free, energy-aware, and speed-aware. First, to provide effective guidance in choosing a good strategy, we present a joint analysis of two conflicting goals based on the degradation in performance. The study addresses the behavior of each strategy under each metric. We assess the performance of different scheduling algorithms by determining a set of nondominated solutions that approximate the Pareto optimal set. We use a set coverage metric to compare the scheduling algorithms in terms of Pareto dominance. [less ▲]

Detailed reference viewed: 93 (4 UL)