References of "Schwartz, Mathew"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailUnclonable human-invisible machine vision markers leveraging the omnidirectional chiral Bragg diffraction of cholesteric spherical reflectors
Agha, Hakam UL; Geng, Yong UL; Ma, Xu UL et al

in Light: Science and Applications (2022), 11(309), 10103841377-022-01002-4

The seemingly simple step of molding a cholesteric liquid crystal into spherical shape, yielding a Cholesteric Spherical Reflector (CSR), has profound optical consequences that open a range of ... [more ▼]

The seemingly simple step of molding a cholesteric liquid crystal into spherical shape, yielding a Cholesteric Spherical Reflector (CSR), has profound optical consequences that open a range of opportunities for potentially transformative technologies. The chiral Bragg diffraction resulting from the helical self-assembly of cholesterics becomes omnidirectional in CSRs. This turns them into selective retroreflectors that are exceptionally easy to distinguish— regardless of background—by simple and low-cost machine vision, while at the same time they can be made largely imperceptible to human vision. This allows them to be distributed in human-populated environments, laid out in the form of QR-code-like markers that help robots and Augmented Reality (AR) devices to operate reliably, and to identify items in their surroundings. At the scale of individual CSRs, unpredictable features within each marker turn them into Physical Unclonable Functions (PUFs), of great value for secure authentication. Via the machines reading them, CSR markers can thus act as trustworthy yet unobtrusive links between the physical world (buildings, vehicles, packaging,...) and its digital twin computer representation. This opens opportunities to address pressing challenges in logistics and supply chain management, recycling and the circular economy, sustainable construction of the built environment, and many other fields of individual, societal and commercial importance. [less ▲]

Detailed reference viewed: 54 (7 UL)
Full Text
Peer Reviewed
See detailEmbedding intelligence in materials for responsive built environment: A topical review on Liquid Crystal Elastomer actuators and sensors
Schwartz, Mathew; Lagerwall, Jan UL

in Building and Environment (2022), 226

Liquid Crystal Elastomers (LCEs) are an exciting category of material that has tremendous application potential across a variety of fields, owing to their unique properties that enable both sensing and ... [more ▼]

Liquid Crystal Elastomers (LCEs) are an exciting category of material that has tremendous application potential across a variety of fields, owing to their unique properties that enable both sensing and actuation. To some, LCEs are simply another type of Shape Memory Polymer, while to others they are an interesting on-going scientific experiment. In this visionary article, we bring an interdisciplinary discussion around creative and impactful ways that LCEs can be applied in the Built Environment to support kinematic and kinetic buildings and situational awareness. We focus particularly on the autonomy made possible by using LCEs, potentially removing needs for motors, wiring and tubing, and even enabling fully independent operation in response to natural environment variations, requiring no power sources. To illustrate the potential, we propose a number of concrete application scenarios where LCEs could offer innovative solutions to problems of great societal importance, such as autonomous active ventilation, heliotropic solar panel systems which can also remove snow or sand autonomously, and invisible coatings with strain mapping functionality, alerting residents in case of dangerous (static or dynamic) loads on roofs or windows, as well as assisting building safety inspection teams after earthquakes. [less ▲]

Detailed reference viewed: 28 (0 UL)
Full Text
Peer Reviewed
See detailLinking Physical Objects to Their Digital Twins via Fiducial Markers Designed for Invisibility to Humans
Schwartz, Mathew; Geng, Yong UL; Agha, Hakam UL et al

in Multifunctional Materials (2021), 4(2), 022002

The ability to label and track physical objects that are assets in digital representations of the world is foundational to many complex systems. Simple, yet powerful methods such as bar- and QR-codes have ... [more ▼]

The ability to label and track physical objects that are assets in digital representations of the world is foundational to many complex systems. Simple, yet powerful methods such as bar- and QR-codes have been highly successful, e.g. in the retail space, but the lack of security, limited information content and impossibility of seamless integration with the environment have prevented a large-scale linking of physical objects to their digital twins. This paper proposes to link digital assets created through building information modeling (BIM) with their physical counterparts using fiducial markers with patterns defined by cholesteric spherical reflectors (CSRs), selective retroreflectors produced using liquid crystal self-assembly. The markers leverage the ability of CSRs to encode information that is easily detected and read with computer vision while remaining practically invisible to the human eye. We analyze the potential of a CSR-based infrastructure from the perspective of BIM, critically reviewing the outstanding challenges in applying this new class of functional materials, and we discuss extended opportunities arising in assisting autonomous mobile robots to reliably navigate human-populated environments, as well as in augmented reality. [less ▲]

Detailed reference viewed: 30 (2 UL)
Full Text
See detailEmbedding Intelligence in Materials for Responsive Built Environment using Liquid Crystal Elastomer Actuators and Sensors
Schwartz, Mathew; Lagerwall, Jan UL

E-print/Working paper (2021)

Liquid Crystal Elastomers (LCEs) are an exciting category of material that has tremendous application potential across a variety of fields, owing to their unique properties that enable both sensing and ... [more ▼]

Liquid Crystal Elastomers (LCEs) are an exciting category of material that has tremendous application potential across a variety of fields, owing to their unique properties that enable both sensing and actuation. To some, LCEs are simply another type of Shape Memory Polymer, while to others they are an interesting on-going scientific experiment. In this visionary article, we bring an interdisciplinary discussion around creative and impactful ways that LCEs can be applied in the Built Environment to support kinematic and kinetic buildings and situational awareness. We focus particularly on the autonomy made possible by using LCEs, potentially removing needs for motors, wiring and tubing, and even enabling fully independent operation in response to natural environment variations, requiring no power sources. To illustrate the potential, we propose a number of concrete application scenarios where LCEs could offer innovative solutions to problems of great societal importance, such as autonomous active ventilation, heliotropic solar panels systems which can also remove snow or sand autonomously, and invisible coatings with strain mapping functionality, alerting residents in case of dangerous (static or dynamic) loads on roofs or windows, as well as assisting building safety inspection teams after earthquakes. [less ▲]

Detailed reference viewed: 86 (0 UL)
Full Text
Peer Reviewed
See detailCholesteric Liquid Crystal Shells as Enabling Material for Information-Rich Design and Architecture.
Schwartz, Mathew; Lenzini, Gabriele UL; Geng, Yong UL et al

in Advanced Materials (2018)

The responsive and dynamic character of liquid crystals (LCs), arising from their ability to self-organize into long-range ordered structures while maintaining fluidity, has given them a role as key ... [more ▼]

The responsive and dynamic character of liquid crystals (LCs), arising from their ability to self-organize into long-range ordered structures while maintaining fluidity, has given them a role as key enabling materials in the information technology that surrounds us today. Ongoing research hints at future LC-based technologies of entirely different types, for instance by taking advantage of the peculiar behavior of cholesteric liquid crystals (CLCs) subject to curvature. Spherical shells of CLC reflect light omnidirectionally with specific polarization and wavelength, tunable from the UV to the infrared (IR) range, with complex patterns arising when many of them are brought together. Here, these properties are analyzed and explained, and future application opportunities from an inter- disciplinary standpoint are discussed. By incorporating arrangements of CLC shells in smart facades or vehicle coatings, or in objects of high value subject to counterfeiting, game-changing future uses might arise in fields spanning infor- mation security, design, and architecture. The focus here is on the challenges of a digitized and information-rich future society where humans increasingly rely on technology and share their space with autonomous vehicles, drones, and robots. [less ▲]

Detailed reference viewed: 380 (14 UL)