![]() Martinez Arbas, Susana ![]() ![]() in Nature Microbiology (2021), 6(1), 123--135 Viruses and plasmids (invasive mobile genetic elements (iMGEs)) have important roles in shaping microbial communities, but their dynamic interactions with CRISPR-based immunity remain unresolved. We ... [more ▼] Viruses and plasmids (invasive mobile genetic elements (iMGEs)) have important roles in shaping microbial communities, but their dynamic interactions with CRISPR-based immunity remain unresolved. We analysed generation-resolved iMGE–host dynamics spanning one and a half years in a microbial consortium from a biological wastewater treatment plant using integrated meta-omics. We identified 31 bacterial metagenome-assembled genomes encoding complete CRISPR–Cas systems and their corresponding iMGEs. CRISPR-targeted plasmids outnumbered their bacteriophage counterparts by at least fivefold, highlighting the importance of CRISPR-mediated defence against plasmids. Linear modelling of our time-series data revealed that the variation in plasmid abundance over time explained more of the observed community dynamics than phages. Community-scale CRISPR-based plasmid–host and phage–host interaction networks revealed an increase in CRISPR-mediated interactions coinciding with a decrease in the dominant ‘Candidatus Microthrix parvicella’ population. Protospacers were enriched in sequences targeting genes involved in the transmission of iMGEs. Understanding the factors shaping the fitness of specific populations is necessary to devise control strategies for undesirable species and to predict or explain community-wide phenotypes. [less ▲] Detailed reference viewed: 39 (3 UL)![]() Martinez Arbas, Susana ![]() in Nature Microbiology (2020) Viruses and plasmids (invasive mobile genetic elements (iMGEs)) have important roles in shaping microbial communities, but their dynamic interactions with CRISPR-based immunity remain unresolved. We ... [more ▼] Viruses and plasmids (invasive mobile genetic elements (iMGEs)) have important roles in shaping microbial communities, but their dynamic interactions with CRISPR-based immunity remain unresolved. We analysed generation-resolved iMGE–host dynamics spanning one and a half years in a microbial consortium from a biological wastewater treatment plant using integrated meta-omics. We identified 31 bacterial metagenome-assembled genomes encoding complete CRISPR–Cas systems and their corresponding iMGEs. CRISPR-targeted plasmids outnumbered their bacteriophage counterparts by at least fivefold, highlighting the importance of CRISPR-mediated defence against plasmids. Linear modelling of our time-series data revealed that the variation in plasmid abundance over time explained more of the observed community dynamics than phages. Community-scale CRISPR-based plasmid–host and phage–host interaction networks revealed an increase in CRISPR-mediated interactions coinciding with a decrease in the dominant ‘Candidatus Microthrix parvicella’ population. Protospacers were enriched in sequences targeting genes involved in the transmission of iMGEs. Understanding the factors shaping the fitness of specific populations is necessary to devise control strategies for undesirable species and to predict or explain community-wide phenotypes. [less ▲] Detailed reference viewed: 179 (9 UL)![]() ; Martinez Arbas, Susana ![]() in Nature Communications (2020) The development of reliable, mixed-culture biotechnological processes hinges on understanding how microbial ecosystems respond to disturbances. Here we reveal extensive phenotypic plasticity and niche ... [more ▼] The development of reliable, mixed-culture biotechnological processes hinges on understanding how microbial ecosystems respond to disturbances. Here we reveal extensive phenotypic plasticity and niche complementarity in oleaginous microbial populations from a biological wastewater treatment plant. We perform meta-omics analyses (metagenomics, metatranscriptomics, metaproteomics and metabolomics) on in situ samples over 14 months at weekly intervals. Based on 1,364 de novo metagenome-assembled genomes, we uncover four distinct fundamental niche types. Throughout the time-series, we observe a major, transient shift in community structure, coinciding with substrate availability changes. Functional omics data reveals extensive variation in gene expression and substrate usage amongst community members. Ex situ bioreactor experiments confirm that responses occur within five hours of a pulse disturbance, demonstrating rapid adaptation by specific populations. Our results show that community resistance and resilience are a function of phenotypic plasticity and niche complementarity, and set the foundation for future ecological engineering efforts. [less ▲] Detailed reference viewed: 205 (22 UL)![]() Martinez Arbas, Susana ![]() ![]() Poster (2018, October 19) Detailed reference viewed: 162 (16 UL)![]() Martinez Arbas, Susana ![]() Poster (2018, September 11) Detailed reference viewed: 120 (11 UL)![]() Muller, Emilie ![]() ![]() in Standards in Genomic Sciences (2017), 12(64), The Gram-negative beta-proteobacterium Zoogloea sp. LCSB751 (LMG 29444) was newly isolated from foaming activated sludge of a municipal wastewater treatment plant. Here, we describe its draft genome ... [more ▼] The Gram-negative beta-proteobacterium Zoogloea sp. LCSB751 (LMG 29444) was newly isolated from foaming activated sludge of a municipal wastewater treatment plant. Here, we describe its draft genome sequence and annotation together with a general physiological and genomic analysis, as the first sequenced representative of the Zoogloea genus. Moreover, Zoogloea sp. gene expression in its environment is described using metatranscriptomic data obtained from the same treatment plant. The presented genomic and transcriptomic information demonstrate a pronounced capacity of this genus to synthesize poly-β-hydroxyalkanoate within wastewater. [less ▲] Detailed reference viewed: 223 (13 UL)![]() Muller, Emilie ![]() in Journal of Bacteriology (2012), 194(23), 6670-6671 Candidatus Microthrix bacteria are deeply branching filamentous actinobacteria which occur at the water-air interface of biological wastewater treatment plants, where they are often responsible for ... [more ▼] Candidatus Microthrix bacteria are deeply branching filamentous actinobacteria which occur at the water-air interface of biological wastewater treatment plants, where they are often responsible for foaming and bulking. Here, we report the first draft genome sequence of a strain from this genus: "Candidatus Microthrix parvicella" strain Bio17-1. [less ▲] Detailed reference viewed: 190 (7 UL) |
||