![]() ; ; et al E-print/Working paper (2023) Background Guidelines for the prevention of cardiovascular disease (CVD) have recommended the assessment of the total CVD risk by risk scores. Current risk algorithms are low in sensitivity and ... [more ▼] Background Guidelines for the prevention of cardiovascular disease (CVD) have recommended the assessment of the total CVD risk by risk scores. Current risk algorithms are low in sensitivity and specificity and they have not incorporated emerging risk markers for CVD. We suggest that CVD risk assessment can be still improved. We have developed a long-term risk prediction model of cardiovascular mortality in patients with stable coronary artery disease (CAD) based on newly available machine learning and on an extended dataset of new biomarkers.Methods 2953 participants of the Ludwigshafen Risk and Cardiovascular Health (LURIC) study were included. 184 laboratory and 21 demographic markers were ranked according to their contribution to risk of cardiovascular (CV) mortality using different data mining approaches. A self-learning bioinformatics workflow, including seven different machine learning algorithms, was developed for CV risk prediction. The study population was stratified into patients with and without significant CAD. Thereby, significant CAD was defined as a lumen narrowing of 50 or more in at least one of the coronary segments or a history of definite myocardial infarction. The machine learning models in both subpopulations were compared with established CV risk assessment tools.Results After a follow-up of 10 years, 603 (20.4%) patients died of cardiovascular causes. 95% patients without CAD deceased within ten years and 247 (13.2 %) patients with CAD within 5 years. Overall and in patients without CAD, NT-proBNP (N-terminal pro B-type natriuretic peptide), TnT (Troponin T), estimated cystatin c based GFR (glomerular filtration rate) and age were the highest ranked predictors, while in patients with CAD, NT-proBNP, GFR, CT-proAVP (C-terminal pro arginine vasopressin) and TNT were highest predictive. In the comparison with the FRS, PROCAM and ESC risk scores, the machine learning workflow produced more accurate and robust CV mortality prediction in patients without CAD. Equivalent CV risk prediction was obtained in the CAD subpopulation in comparison with the Marschner risk score. Overall, the existing algorithms in general tend to assign more patients into the medium risk groups, while the machine learning algorithms tend to have a clearer risk/no risk assignment. The framework is available upon request.Conclusion We have developed a fully automated and self-validating computational framework of machine learning techniques using an extensive database of clinical, routinely and non-routinely measured laboratory data. Our framework predicts long-term CV mortality at least as accurate as existing CVD risk scores. A combination of four highly ranked biomarkers and the random forest approach showed the best predictive results. Moreover, a dynamic computational model has several advantages over static CVD risk prediction tools: it is freeware, transparent, variable, transferable and expandable to any population, types of events and time frames. [less ▲] Detailed reference viewed: 54 (3 UL)![]() Didier, Jeff ![]() ![]() ![]() Poster (2022, October 26) Frailty is a geriatric medical condition that is highly associated with age and age-related diseases. The multidimensional consequences of frailty are heavily impacting the quality of life, and will ... [more ▼] Frailty is a geriatric medical condition that is highly associated with age and age-related diseases. The multidimensional consequences of frailty are heavily impacting the quality of life, and will inevitably increase the burden on healthcare systems in the future. Most importantly, the lack of a universal standard to describe, diagnose, or let alone treat frailty, is further complicating the situation in the long-term. Nowadays, more and more frailty assessment tools are being developed on a regional and institutional basis, which is continuing to drive the heterogeneity in the characterization of frailty further apart. Gaining better insights into the underlying causes and pathophysiology of frailty, and how it is developing in patients is, therefore, required to establish strong and accurately tailored response schemes for frail patients, where currently only symptoms are treated. Thus, in this study, we deployed machine learning-based classification and optimization techniques to predict frailty in elderly people aged 65 or above from the Berlin Aging Study II (BASE-II, n=1512, frail=484) and revealed some of the most informative biomedical information to characterize frailty, including new potential biomarkers. Frailty in BASE-II was measured by the Fried et al. 5-item frailty index, composed of the clinical variables grip strength, weight loss, exhaustion, physical activity, and gait. The level of frailty in BASE-II was adapted for binary classification purposes by merging the pre-frail and frail levels as frail. A configurable in-house pipeline was developed for pre-processing the clinical data and predicting the target disease by deploying Support Vector Machines Classification. The most informative and essential subgroup of clinical measurements with regards to frailty was investigated by re-optimizing an initially full data-driven model by sequentially leaving out one subgroup. The best prediction power was yielded with resampling and dimensionality reduction techniques using the F-beta-2 score, and was further improved by adding one item of the Fried et al. frailty index. Furthermore, differences between the gender in the data set led to the investigation of gender-specific model configurations, followed by re-optimizations. As a result, we were able to specifically increase the predictive power in gender-specific groups, and will simultaneously emphasize on the differences between the most informative clinical biomarkers as well as the most essential subgroups for mixed and gender-specific BASE-II. The results herein suggest that a combination of the detected easy-to-obtain biomedical information on frailty risk factors together with one Fried et al. phenotype information provided by i.e., smart wearable devices (gait, grip strength, …) could significantly improve the frailty prediction power in mixed and gender-specific clinical cohort data. [less ▲] Detailed reference viewed: 35 (3 UL)![]() Didier, Jeff ![]() ![]() ![]() Poster (2022, October 09) Frailty is a geriatric medical condition that is highly associated with age and age-related diseases. The multidimensional consequences of frailty are heavily impacting the quality of life, and will ... [more ▼] Frailty is a geriatric medical condition that is highly associated with age and age-related diseases. The multidimensional consequences of frailty are heavily impacting the quality of life, and will inevitably increase the burden on healthcare systems in the future. Most importantly, the lack of a universal standard to describe, diagnose, or let alone treat frailty, is further complicating the situation in the long-term. Nowadays, more and more frailty assessment tools are being developed on a regional and institutional basis, which is continuing to drive the heterogeneity in the characterization of frailty further apart. Gaining better insights into the underlying causes and pathophysiology of frailty, and how it is developing in patients is, therefore, required to establish strong and accurately tailored response schemes for frail patients, where currently only symptoms are treated. Thus, in this study, we deployed machine learning-based classification and optimization techniques to predict frailty in the Berlin Aging Study II (BASE-II, N=1512, frail=484) and revealed some of the most informative biomedical information to characterize frailty, including new potential biomarkers. Frailty in BASE-II was measured by the Fried et al. 5-item frailty index, composed of the clinical variables grip strength, weight loss, exhaustion, physical activity, and gait. The level of frailty in BASE-II was adapted for binary classification purposes by merging the pre-frail and frail levels as frail. A configurable in-house pipeline was developed for pre-processing the clinical data, predicting the target disease, and determining the most informative subgroup of clinical measurements with regards to frailty. The best prediction power was yielded with resampling and dimensionality reduction techniques using the F-beta-2 score, and was further increased by adding one item of the Fried et al. frailty index. We suggest that a combination of the easy-to-obtain biomedical information on frailty risk factors together with one Fried et al. phenotype information provided by i.e. smart wearable devices (gait, grip strength, . . . ) could significantly improve the frailty prediction power. [less ▲] Detailed reference viewed: 51 (4 UL)![]() Aho, Velma ![]() ![]() in Cell Host and Microbe (2022), 30(9), 1340 The human gut microbiome is intricately connected to health and disease. Microbiome-derived molecules are implicated in many chronic diseases involving inflammation. Herein, we summarize the diverse ... [more ▼] The human gut microbiome is intricately connected to health and disease. Microbiome-derived molecules are implicated in many chronic diseases involving inflammation. Herein, we summarize the diverse complex of such immunogenic molecules, including nucleic acids, (poly)peptides, structural molecules, and metabolites. The interactions between this “expobiome” and human immune pathways are specifically illustrated in the context of chronic diseases. [less ▲] Detailed reference viewed: 65 (4 UL)![]() Wilmes, Paul ![]() ![]() in Cell Host and Microbe (2022), 30(9), 1201-1206 The human gut microbiome produces a functional complex of biomolecules, including nucleic acids, (poly) peptides, structural molecules, and metabolites. This impacts human physiology in multiple ways ... [more ▼] The human gut microbiome produces a functional complex of biomolecules, including nucleic acids, (poly) peptides, structural molecules, and metabolites. This impacts human physiology in multiple ways, especially by triggering inflammatory pathways in disease. At present, much remains to be learned about the identity of key effectors and their causal roles. [less ▲] Detailed reference viewed: 48 (1 UL)![]() ; Aho, Velma ![]() ![]() E-print/Working paper (2022) Patients with Parkinson’s disease (PD) exhibit differences in their gut microbiomes compared to healthy individuals. Although differences have most commonly been described in the abundances of bacterial ... [more ▼] Patients with Parkinson’s disease (PD) exhibit differences in their gut microbiomes compared to healthy individuals. Although differences have most commonly been described in the abundances of bacterial taxa, changes to viral and archaeal populations have also been observed. Mechanistic links between gut microbes and PD pathogenesis remain elusive but could involve molecules that promote α-synuclein aggregation. Here, we show that 2-hydroxypyridine (2-HP) represents a key molecule for the pathogenesis of PD. We observe significantly elevated 2-HP levels in faecal samples from patients with PD or its prodrome, idiopathic REM sleep behaviour disorder (iRBD), compared to healthy controls. 2-HP is correlated with the archaeal species Methanobrevibacter smithii and with genes involved in methane metabolism, and it is detectable in isolate cultures of M. smithii. We demonstrate that 2-HP is selectively toxic to transgenic α-synuclein overexpressing yeast and increases α-synuclein aggregation in a yeast model as well as in human induced pluripotent stem cell derived enteric neurons. It also exacerbates PD-related motor symptoms, α-synuclein aggregation, and striatal degeneration when injected intrastriatally in transgenic mice overexpressing human α-synuclein. Our results highlight the effect of an archaeal molecule in relation to the gut-brain axis, which is critical for the diagnosis, prognosis, and treatment of PD. [less ▲] Detailed reference viewed: 133 (12 UL)![]() Schulz, André ![]() in Heinrichs, Markus; Schönauer, Monika (Eds.) 47. Jahrestagung Psychologie und Gehirn (2022) Viszerale Hypersensitivität wird als zentraler Mechanismus bei chronisch-entzündlichen Darmerkrankungen (CED) und Reizdarmsyndrom (RDS) diskutiert, welche beide mit einer erheblichen Einschränkung der ... [more ▼] Viszerale Hypersensitivität wird als zentraler Mechanismus bei chronisch-entzündlichen Darmerkrankungen (CED) und Reizdarmsyndrom (RDS) diskutiert, welche beide mit einer erheblichen Einschränkung der Lebensqualität einhergehen. Bisherige Studien verwenden zumeist invasive Verfahren, die jedoch typischerweise mit der Messung viszeraler Wahrnehmung interferieren. Diese Studie untersucht daher, ob CED und RDS mit einer veränderten Wahrnehmung „natürlicher“ (nicht-invasiver) gastrischer Dehnungen assoziiert sind („Interozeption“). Zwanzig CED-Patienten in Remission (13 Morbus Crohn, 7 Colitis Ulcerosa), 12 RDS-Patienten, sowie 20/12 parallelisierte gesunde Kontrollprobanden absolvierten den 2-stufigen Water-Load-Test, bei dem eine beliebige Menge Wasser getrunken wird, bis die subjektiven Schwelle der Sättigung (Stufe 1) und des Völlegefühls (Stufe 2) erreicht sind. Gastrische Motilität wurde mittels Elektrogastrographie untersucht. CED-Patienten tranken signifikant mehr Wasser bis zur Sättigungsschwelle als RDS-Patienten, während es keine Unterschiede zu den Kontrollgruppen gab. Die getrunkene Wassermenge bis zur Schwelle des Völlegefühls unterschied sich nicht zwischen den Gruppen. Die elektrogastrographischen Muster zeigten ebenfalls keine Gruppenunterschiede, was impliziert, dass es keine Pathologien in der gastrischen Motilität gab. Die getrunkene Wassermenge bis zur Sättigung korrelierte negativ mit darmbezogener Lebensqualität bei CED-Patienten, aber positiv mit emotionalem Wohlbefinden bei RDS-Patienten. Diese Ergebnisse legen eine relative gastrische Hypersensitivität bei RDS und eine relative gastrische Hyposensitivität bei CED nahe, was jeweils mit spezifischen Facetten der wahrgenommenen Lebensqualität assoziiert ist. [less ▲] Detailed reference viewed: 78 (12 UL)![]() Neininger, Kerstin ![]() ![]() in Journal of the Endocrine Society (2021, May 03), 5(Issue Supplement_1), 68 Pathogenesis of autonomous steroid secretion and adrenocortical tumorigenesis remains partially obscure. Our aim was to identify novel genetic alterations in adrenocortical adenomas (ACA) without somatic ... [more ▼] Pathogenesis of autonomous steroid secretion and adrenocortical tumorigenesis remains partially obscure. Our aim was to identify novel genetic alterations in adrenocortical adenomas (ACA) without somatic mutations in known driver genes. Whole-genome sequencing was performed on 26 ACA/blood-derived DNA pairs without driver mutations in PRKACA, GNAS and CTNNB1 genes at previous WES (ENSAT study JCEM 2016). These included 12 cortisol-producing adenomas with Cushing syndrome (CS-CPAs), 7 with mild autonomous cortisol secretion (MACS-CPAs), and 7 endocrine-inactive ACAs (EIAs). Seven adrenocortical carcinomas (ACC) were added to the cohort. We developed a bioinformatics pipeline for a comprehensive genome analysis and to reveal differences in variant distribution. Strelka, VarScan2 and ANNOVAR software and an in-house confidence score were used for variant calling and functional annotation. Combined Annotation-Dependent-Depletion (CADD) values were used to prioritize pathogenic variants. Additional focus relied on variants in pathogenically known pathways (Wnt/β-catenin, cAMP/PKA pathway). NovoBreak algorithm was applied to discover structural variations. Two hypermutated CS-CPA samples were excluded from further analysis. Using different filters, we detected variants in driver genes not observed at WES (one p.S45P in CTNNB1 and one p.R206L in PRKACA in two different CS-CPAs). In total, we report 179,830 variations (179,598 SNVs; 232 indels) throughout all samples, being more abundant in ACC (88,954) compared to ACA (CS-CPAs: 31,821; MACS-CPAs: 35,008; EIAs: 29,963). Most alterations were in intergenic (>50%), followed by intronic and ncRNA intronic regions. A total of 32 predicted pathogenic variants were found in both coding (CADD values ≥ 15) and non-coding (CADD values ≥ 5) regions. We found 3,301 possibly damaging and recurrent variants (intergenic mutations removed) (CS-CPAs: 1,463; MACS-CPAs: 1,549; EIAs: 1,268; ACC: 1,660), mostly accumulated in intronic regions. Some of these were detected in members of the Wnt/β-catenin (CS-CPAs: 6; MACS-CPAs: 2; EIA: 1) and cAMP/PKA (CS-CPAs: 6; MACS-CPAs: 7; EIA: 4) pathways (e.g. ADCY1, ADCY2, GNA13, PDE11A). We also found a slightly higher number of structural variations in EIA (3,620) and ACC (3,486) compared to CS-CPAs (977) and MACS-CPAs (2,119). In conclusion, still unrevealed genetic alterations, especially in intronic regions, may accompany early adrenal tumorigenesis and/or autonomous cortisol secretion. [less ▲] Detailed reference viewed: 75 (4 UL)![]() Badkas, Apurva ![]() ![]() in Biology (2021), 10(2), A large percentage of the global population is currently afflicted by metabolic diseases (MD), and the incidence is likely to double in the next decades. MD associated co-morbidities such as non-alcoholic ... [more ▼] A large percentage of the global population is currently afflicted by metabolic diseases (MD), and the incidence is likely to double in the next decades. MD associated co-morbidities such as non-alcoholic fatty liver disease (NAFLD) and cardiomyopathy contribute significantly to impaired health. MD are complex, polygenic, with many genes involved in its aetiology. A popular approach to investigate genetic contributions to disease aetiology is biological network analysis. However, data dependence introduces a bias (noise, false positives, over-publication) in the outcome. While several approaches have been proposed to overcome these biases, many of them have constraints, including data integration issues, dependence on arbitrary parameters, database dependent outcomes, and computational complexity. Network topology is also a critical factor affecting the outcomes. Here, we propose a simple, parameter-free method, that takes into account database dependence and network topology, to identify central genes in the MD network. Among them, we infer novel candidates that have not yet been annotated as MD genes and show their relevance by highlighting their differential expression in public datasets and carefully examining the literature. The method contributes to uncovering connections in the MD mechanisms and highlights several candidates for in-depth study of their contribution to MD and its co-morbidities. [less ▲] Detailed reference viewed: 174 (16 UL)![]() Noor, Fozia ![]() ![]() in Scientific Reports (2020), 10(1), 17855 Lifestyle-induced weight loss is regarded as an efficient therapy to reverse metabolic syndrome (MetS) and to prevent disease progression. The objective of this study was to investigate whether lifestyle ... [more ▼] Lifestyle-induced weight loss is regarded as an efficient therapy to reverse metabolic syndrome (MetS) and to prevent disease progression. The objective of this study was to investigate whether lifestyle-induced weight loss modulates gene expression in circulating monocytes. We analyzed and compared gene expression in monocytes (CD14+ cells) and subcutaneous adipose tissue biopsies by unbiased mRNA profiling. Samples were obtained before and after diet-induced weight loss in well-defined male individuals in a prospective controlled clinical trial (ICTRP Trial Number: U1111-1158-3672). The BMI declined significantly (- 12.6%) in the treatment arm (N = 39) during the 6-month weight loss intervention. This was associated with a significant reduction in hsCRP (- 45.84%) and circulating CD14+ cells (- 21.0%). Four genes were differentially expressed (DEG's) in CD14+ cells following weight loss (ZRANB1, RNF25, RB1CC1 and KMT2C). Comparative analyses of paired CD14+ monocytes and subcutaneous adipose tissue samples before and after weight loss did not identify common genes differentially regulated in both sample types. Lifestyle-induced weight loss is associated with specific changes in gene expression in circulating CD14+ monocytes, which may affect ubiquitination, histone methylation and autophagy [less ▲] Detailed reference viewed: 74 (3 UL)![]() ; May, Patrick ![]() ![]() in Molecular Psychiatry (2020), 25(3), 629-639 Common variants of about 20 genes contributing to AD risk have so far been identified through genome-wide association studies (GWAS). However, there is still a large proportion of heritability that might ... [more ▼] Common variants of about 20 genes contributing to AD risk have so far been identified through genome-wide association studies (GWAS). However, there is still a large proportion of heritability that might be explained by rare but functionally important variants. One of the so far identified genes with rare AD causing variants is ADAM10. Using whole-genome sequencing we now identified a single rare nonsynonymous variant (SNV) rs142946965 [p.R215I] in ADAM17 co-segregating with an autosomal-dominant pattern of late-onset AD in one family. Subsequent genotyping and analysis of available whole-exome sequencing data of additional case/control samples from Germany, the UK and the USA identified five variant carriers among AD patients only. The mutation inhibits pro-protein cleavage and the formation of the active enzyme, thus leading to loss-of-function of ADAM17 α-secretase. Further, we identified a strong negative correlation between ADAM17 and APP gene expression in human brain and present in vitro evidence that ADAM17 negatively controls the expression of APP. As a consequence, p.R215I mutation of ADAM17 leads to elevated Aß formation in vitro. Together our data supports a causative association of the identified ADAM17 variant in the pathogenesis of AD. [less ▲] Detailed reference viewed: 357 (31 UL)![]() ; ; Odenbreit, Christoph ![]() in International Journal of Adhesion and Adhesives (2019), 91 The failure hyperelastic structural sealant joints is a fracture mechanics problem. Its modeling requires knowledge of the material property fracture toughness. The present work describes a methodology ... [more ▼] The failure hyperelastic structural sealant joints is a fracture mechanics problem. Its modeling requires knowledge of the material property fracture toughness. The present work describes a methodology for determining the mode I bulk material fracture toughness of structural silicone sealants. The concept is demonstrated using DOWSIL™ 993 as an example. In total we manufactured, tested and evaluated 13 DCB specimens of 6mm and 12mm adhesive thickness. The fracture toughness is identified from J-integral measurements. The theory for determining the J-integral at finite deformations is laid out and an automated data analysis procedure is suggested. The presented approach further allows... [less ▲] Detailed reference viewed: 85 (10 UL)![]() ; ; Noor, Fozia ![]() in Journal of clinical medicine (2019), 8(1), Vascular adhesion protein-1 (VAP-1) is a multifunction protein. While membrane-bound VAP-1 is an adhesion protein, soluble VAP-1 catalyzes the deamination of primary amines through its semicarbazide ... [more ▼] Vascular adhesion protein-1 (VAP-1) is a multifunction protein. While membrane-bound VAP-1 is an adhesion protein, soluble VAP-1 catalyzes the deamination of primary amines through its semicarbazide-sensitive amino oxidase (SSAO) activity. VAP-1 supports the transmigration of leukocytes and increases oxidative stress. In chronic liver diseases, it plays a role in leukocyte infiltration and fibrogenesis. Here, we measured VAP-1 plasma concentration and its SSAO activity in 322 patients with chronic hepatitis C infection and evaluated the association of VAP-1 with fibrosis stages. VAP-1 concentration strongly correlated with liver stiffness and was the second strongest influencing variable after gamma-glutamytransferase (GGT) for liver stiffness in regression analysis. The VAP-1 concentration increased with advancing fibrosis stages and the highest concentrations were found in patients with cirrhosis. According to the receiver operating characteristic (ROC) analysis, a VAP-1 cut-off value of 541 ng/mL predicted histologically confirmed cirrhosis (sensitivity 74%; specificity 72%). SSAO activity correlated only moderately with liver stiffness, showing a relatively small increase in advanced fibrosis. To our knowledge, this is the first study on VAP-1 in chronic hepatitis C infection showing its association with progressive fibrosis. In conclusion, VAP-1 plasma concentration, rather than its SSAO activity, may represent a non-invasive biomarker for monitoring fibrogenesis in patients with chronic hepatitis C infection. [less ▲] Detailed reference viewed: 62 (2 UL)![]() May, Patrick ![]() in Neurology Genetics (2018), 4(2), Objective The aim of this study was to identify variants associated with familial late-onset Alzheimer disease (AD) using whole-genome sequencing. Methods Several families with an autosomal dominant ... [more ▼] Objective The aim of this study was to identify variants associated with familial late-onset Alzheimer disease (AD) using whole-genome sequencing. Methods Several families with an autosomal dominant inheritance pattern of AD were analyzed by whole-genome sequencing. Variants were prioritized for rare, likely pathogenic variants in genes already known to be associated with AD and confirmed by Sanger sequencing using standard protocols. Results We identified 2 rare ABCA7 variants (rs143718918 and rs538591288) with varying penetrance in 2 independent German AD families, respectively. The single nucleotide variant (SNV) rs143718918 causes a missense mutation, and the deletion rs538591288 causes a frameshift mutation of ABCA7. Both variants have previously been reported in larger cohorts but with incomplete segregation information. ABCA7 is one of more than 20 AD risk loci that have so far been identified by genome-wide association studies, and both common and rare variants of ABCA7 have previously been described in different populations with higher frequencies in AD cases than in controls and varying penetrance. Furthermore, ABCA7 is known to be involved in several AD-relevant pathways. Conclusions We conclude that both SNVs might contribute to the development of AD in the examined family members. Together with previous findings, our data confirm ABCA7 as one of the most relevant AD risk genes. [less ▲] Detailed reference viewed: 209 (11 UL)![]() ; ; Jäger, Christian ![]() in Oncotarget (2018), 9(63), Itaconic acid is produced by mammalian leukocytes upon pro-inflammatory activation. It appears to inhibit bacterial growth and to rewire the metabolism of the host cell by inhibiting succinate ... [more ▼] Itaconic acid is produced by mammalian leukocytes upon pro-inflammatory activation. It appears to inhibit bacterial growth and to rewire the metabolism of the host cell by inhibiting succinate dehydrogenase. Yet, it is unknown whether itaconic acid acts only intracellularly, locally in a paracrine fashion, or whether it is even secreted from the inflammatory cells at meaningful levels in peripheral blood of patients with severe inflammation or sepsis. The aim of this study was to determine the release rate of itaconic acid from pro-inflammatory activated macrophages in vitro and to test for the abundance of itaconic acid in bodyfluids of patients suffering from acute inflammation. We demonstrate that excretion of itaconic acid happens at a low rate and that it cannot be detected in significant amounts in plasma or urine of septic patients or in liquid from bronchial lavage of patients with pulmonary inflammation. We conclude that itaconic acid may serve as a pro-inflammatory marker in immune cells but that it does not qualify as a biomarker in the tested body fluids. [less ▲] Detailed reference viewed: 116 (6 UL)![]() Noor, Fozia ![]() ![]() ![]() in Journal of innate immunity (2018) The human gut microbiota gained tremendous importance in the last decade as next-generation technologies of sequencing and multiomics analyses linked the role of the microbial communities to host ... [more ▼] The human gut microbiota gained tremendous importance in the last decade as next-generation technologies of sequencing and multiomics analyses linked the role of the microbial communities to host physiology and pathophysiology. A growing number of human pathologies and diseases are linked to the gut microbiota. One of the main mechanisms by which the microbiota influences the host is through its interactions with the host immune system. These interactions with both innate and adaptive host intestinal and extraintestinal immunity, although usually commensalistic even mutualistic with the host, in some cases lead to serious health effects. In the case of allogenic hematopoietic stem cell transplantation (allo-HSCT), the disruption of the intestinal microbiota diversity is associated with acute graft-versus-host disease (GvHD). Causing inflammation of the liver, skin, lungs, and the intestine, GvHD occurs in 40-50% of patients undergoing allo-HSCT and results in significant posttransplantation mortality. In this review, we highlight the impact of the gut microbiota on the host immunity in GvHD and the potential of microbiota in alleviation or even prevention of GvHD. [less ▲] Detailed reference viewed: 223 (4 UL)![]() Kaysen, Anne ![]() ![]() ![]() in Translational Research: the Journal of Laboratory and Clinical Medicine (2017) In patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT), treatment-induced changes to the gastrointestinal tract (GIT) microbiome have been linked to adverse outcomes, most ... [more ▼] In patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT), treatment-induced changes to the gastrointestinal tract (GIT) microbiome have been linked to adverse outcomes, most notably graft-versus-host disease (GvHD). However, it is presently unknown whether this relationship is causal or consequential. Here, we performed an integrated meta-omic analysis to probe deeper into the GIT microbiome changes during allo-HSCT and its accompanying treatments. We used 16S and 18S rRNA gene amplicon sequencing to resolve archaea, bacteria, and eukaryotes within the GIT microbiomes of 16 patients undergoing allo-HSCT for the treatment of hematologic malignancies. These results revealed a major shift in the GIT microbiome after allo-HSCT including a marked reduction in bacterial diversity, accompanied by only limited changes in eukaryotes and archaea. An integrated analysis of metagenomic and metatranscriptomic data was performed on samples collected from a patient before and after allo-HSCT for acute myeloid leukemia. This patient developed severe GvHD, leading to death 9 months after allo-HSCT. In addition to drastically decreased bacterial diversity, the post-treatment microbiome showed a higher overall number and higher expression levels of antibiotic resistance genes (ARGs). One specific Escherichia coli strain causing a paravertebral abscess was linked to GIT dysbiosis, suggesting loss of intestinal barrier integrity. The apparent selection for bacteria expressing ARGs suggests that prophylactic antibiotic administration may adversely affect the overall treatment outcome. We therefore assert that such analyses including information about the selection of pathogenic bacteria expressing ARGs may assist clinicians in "personalizing" regimens for individual patients to improve overall outcomes. [less ▲] Detailed reference viewed: 400 (47 UL)![]() ; May, Patrick ![]() ![]() in Alzheimer's and Dementia: the Journal of the Alzheimer's Association (2017), 13(7, Supplement), 648 Background Genetic mutations leading to familial forms of Alzheimer disease (AD) have so far been reported for a few genes including APP, PSEN1 and PSEN2, UNC5C, PLD3, ABCA7, TTC3, and possibly ADAM10 ... [more ▼] Background Genetic mutations leading to familial forms of Alzheimer disease (AD) have so far been reported for a few genes including APP, PSEN1 and PSEN2, UNC5C, PLD3, ABCA7, TTC3, and possibly ADAM10. With the advent of whole exome and whole genome sequencing approaches new genes and mutations are likely to be identified. Methods We analyzed the genetic cause of AD in a large multiplex family with an autosomal-dominant pattern of inheritance with LOAD. The family lacked pathogenic mutations of known AD genes. We performed whole-genome sequencing (WGS) in six family members (two affected and four unaffected) and prioritized rare, potential damaging, variants that segregated with disease. Variants were further characterized by subsequent molecular analyzes in human brain and cell culture models. Results We identified a single rare nonsynonymous variant co-segregating with AD. The mutation inhibits pro-protein cleavage and the formation of the active enzyme, thus leading to a loss-of-function of the gene. We further found a strong negative correlation between the identified gene and APP gene expression in human brain and in cells over-expressing the gene. The negative regulation of APP expression was only observed for the wt gene, but not for mutated forms, thus causing beside the loss of enzyme function a decoupling of both APPexpression and subsequent beta-amyloid formation. The identity of the gene will be presented on the conference. Conclusions This novel pathway strongly supports a causative association of the identified gene with the pathogenesis of AD. [less ▲] Detailed reference viewed: 295 (28 UL)![]() Heintz, Anna ![]() ![]() in Nature Microbiology (2016), 2 Detailed reference viewed: 357 (25 UL)![]() Heintz, Anna ![]() ![]() in Nature Microbiology (2016), 2 The gastrointestinal microbiome is a complex ecosystem with functions that shape human health. Studying the relationship between taxonomic alterations and functional repercussions linked to disease ... [more ▼] The gastrointestinal microbiome is a complex ecosystem with functions that shape human health. Studying the relationship between taxonomic alterations and functional repercussions linked to disease remains challenging. Here, we present an integrative approach to resolve the taxonomic and functional attributes of gastrointestinal microbiota at the metagenomic, metatranscriptomic and metaproteomic levels. We apply our methods to samples from four families with multiple cases of type 1 diabetes mellitus (T1DM). Analysis of intra- and inter-individual variation demonstrates that family membership has a pronounced effect on the structural and functional composition of the gastrointestinal microbiome. In the context of T1DM, consistent taxonomic differences were absent across families, but certain human exocrine pancreatic proteins were found at lower levels. The associated microbial functional signatures were linked to metabolic traits in distinct taxa. The methodologies and results provide a foundation for future large-scale integrated multi-omic analyses of the gastrointestinal microbiome in the context of host-microbe interactions in human health and disease. [less ▲] Detailed reference viewed: 606 (31 UL) |
||