References of "Schmitz-Van De Leur, H."
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailCross-regulation of cytokine signalling: Pro-inflammatory cytokines restrict IL-6 signalling through receptor internalisation and degradation
Radtke, S.; Wüller, S.; Yang, X.-P. et al

in Journal of Cell Science (2010), 123(6), 947-959

The inflammatory response involves a complex interplay of different cytokines which act in an auto- or paracrine manner to induce the so-called acute phase response. Cytokines are known to crosstalk on ... [more ▼]

The inflammatory response involves a complex interplay of different cytokines which act in an auto- or paracrine manner to induce the so-called acute phase response. Cytokines are known to crosstalk on multiple levels, for instance by regulating the mRNA stability of targeted cytokines through activation of the p38-MAPK pathway. In our study we discovered a new mechanism that answers the long-standing question how pro-inflammatory cytokines and environmental stress restrict immediate signalling of interleukin (IL)-6-type cytokines. We show that p38, activated by IL-1b, TNFa or environmental stress, impairs IL-6-induced JAK/STAT signalling through phosphorylation of the common cytokine receptor subunit gp130 and its subsequent internalisation and degradation. We identify MK2 as the kinase that phosphorylates serine 782 in the cytoplasmic part of gp130. Consequently, inhibition of p38 or MK2, deletion of MK2 or mutation of crucial amino acids within the MK2 target site or the di-leucine internalisation motif blocks receptor depletion and restores IL-6-dependent STAT activation as well as gene induction. Hence, a novel negative crosstalk mechanism for cytokine signalling is described, where cytokine receptor turnover is regulated in trans by pro-inflammatory cytokines and stress stimuli to coordinate the inflammatory response. [less ▲]

Detailed reference viewed: 139 (0 UL)
Peer Reviewed
See detailDual role of the Jak1 FERM and kinase domains in cytokine receptor binding and in stimulation-dependent Jak activation
Haan, Serge UL; Margue, Christiane UL; Engrand, A. et al

in Journal of Immunology (2008), 180(2), 998-1007

Jak1 is a tyrosine kinase that noncovalently forms tight complexes with a variety of cytokine receptors and is critically involved in signal transduction via cytokines. Jaks are predicted to have a 4.1 ... [more ▼]

Jak1 is a tyrosine kinase that noncovalently forms tight complexes with a variety of cytokine receptors and is critically involved in signal transduction via cytokines. Jaks are predicted to have a 4.1, ezrin, radixin, moesin (FERM) domain at their N terminus. FERM domains are composed of three structurally unrelated subdomains (F1, F2, and F3) which are in close contact to one another and form the clover-shaped FERM domain. We generated a model structure of the Jak1 FERM domain, based on solved FERM structures and the alignments with other FERM domains. To destabilize different subdomains and to uncover their exact function, we mutated specific hydrophobic residues conserved in FERM domains and involved in hydrophobic core interactions. In this study, we show that the structural integrity of the F2 subdomain of the FERM domain of Jak1 is necessary to bind the IFN-gammaRalpha. By mutagenesis of hydrophobic residues in the hydrophobic core between the three FERM subdomains, we find that the structural context of the FERM domain is necessary for the inhibition of Jak1 phosphorylation. Thus, FERM domain mutations can have repercussions on Jak1 function. Interestingly, a mutation in the kinase domain (Jak1-K907E), known to abolish the catalytic activity, also leads to an impaired binding to the IFN-gammaRalpha when this mutant is expressed at endogenous levels in U4C cells. Our data show that the structural integrity of both the FERM domain and of the kinase domain is essential for both receptor binding and catalytic function/autoinhibition. [less ▲]

Detailed reference viewed: 152 (9 UL)
Peer Reviewed
See detailNovel role of Janus kinase 1 in the regulation of oncostatin M receptor surface expression
Radtke, S.; Hermanns, H. M.; Haan, Claude UL et al

in Journal of Biological Chemistry (2002), 277(13), 11297-305

The oncostatin M receptor (OSMR) is part of a heterodimeric receptor complex that mediates signal transduction of the pleiotropic cytokine OSM via a signaling pathway involving Janus kinases (Jaks) and ... [more ▼]

The oncostatin M receptor (OSMR) is part of a heterodimeric receptor complex that mediates signal transduction of the pleiotropic cytokine OSM via a signaling pathway involving Janus kinases (Jaks) and transcription factors of the signal transducers and activators of transcription (STAT) family. Upon heterologous expression of the OSMR in several cell lines, we observed that its surface expression was significantly enhanced by coexpression of the Janus kinases Jak1, Jak2, and Tyk2 but not Jak3. Chimeric receptors consisting of the extracellular region of the interleukin-5 receptor beta chain and the transmembrane and intracellular part of the OSMR were similarly up-regulated on the plasma membrane when Jak1 was coexpressed. The overall expression level of these constructs did not change significantly, but Jak1 coexpression increased the amount of endoglycosidase H-resistant, fully processed OSMR chimeras. Using mutated receptor and Jak1 constructs, we were able to demonstrate that association of Jak1 with the membrane proximal region of the receptor, but not its kinase activity, is necessary for this effect. Moreover, deletion of the OSMR box1/2 region also resulted in an improved surface expression indicating that this region may contain a signal preventing efficient receptor surface expression in the absence of associated Jaks. Finally we demonstrate that in Jak1-deficient cells, the endogenous OSMR is significantly down-regulated, an effect that can be reversed by transient expression of Jak1 in these cells. [less ▲]

Detailed reference viewed: 115 (1 UL)
Peer Reviewed
See detailMapping of a region within the N terminus of Jak1 involved in cytokine receptor interaction
Haan, Claude UL; Isharc, H.; Hermanns, H. M. et al

in Journal of Biological Chemistry (2001), 276(40), 37451-8

Janus kinase 1 (Jak1) is a cytoplasmic tyrosine kinase that noncovalently associates with a variety of cytokine receptors. Here we show that the in vitro translated N-terminal domains of Jak1 are ... [more ▼]

Janus kinase 1 (Jak1) is a cytoplasmic tyrosine kinase that noncovalently associates with a variety of cytokine receptors. Here we show that the in vitro translated N-terminal domains of Jak1 are sufficient for binding to a biotinylated peptide comprising the membrane-proximal 73 amino acids of gp130, the signal-transducing receptor chain of interleukin-6-type cytokines. By the fold recognition approach amino acid residues 36-112 of Jak1 were predicted to adopt a beta-grasp fold, and a structural model was built using ubiquitin as a template. Substitution of Tyr(107) to alanine, a residue conserved among Jaks and involved in hydrophobic core interactions of the proposed beta-grasp domain, abrogated binding of full-length Jak1 to gp130 in COS-7 transfectants. By further mutagenesis we identified the loop 4 region of the Jak1 beta-grasp domain as essential for gp130 association and gp130-mediated signal transduction. In Jak1-deficient U4C cells reconstituted with the loop 4 Jak1 mutants L80A/Y81A and Delta(Tyr(81)-Ser(84)), the interferon-gamma, interferon-alpha, and interleukin-6 responses were similarly impaired. Thus, loop 4 of the beta-grasp domain plays a role in the association of Jak1 with both class I and II cytokine receptors. Taken together the structural model and the mutagenesis data provide further insight into the interaction of Janus kinases with cytokine receptors. [less ▲]

Detailed reference viewed: 106 (1 UL)
Peer Reviewed
See detailContributions of leukemia inhibitory factor receptor and oncostatin M receptor to signal transduction in heterodimeric complexes with glycoprotein 130
Hermanns, H. M.; Radtke, S.; Haan, Claude UL et al

in Journal of Immunology (2000), 163(12), 6651-8

Leukemia inhibitory factor (LIF), cardiotrophin-1, ciliary neurotrophic factor, and oncostatin M (OSM) lead to heterodimerization of LIF receptor (LIFR) or the OSM-specific receptor (OSMR) with ... [more ▼]

Leukemia inhibitory factor (LIF), cardiotrophin-1, ciliary neurotrophic factor, and oncostatin M (OSM) lead to heterodimerization of LIF receptor (LIFR) or the OSM-specific receptor (OSMR) with glycoprotein (gp) 130, the common receptor subunit for IL-6-type cytokines. Thereby intracellular signaling via Janus kinases (Jaks) and STAT transcription factors is initiated. We investigated the contributions of LIFR and OSMR to signal transduction in the context of heterodimers with gp130. Chimeric receptors based on the extracellular parts of the IL-5R alpha- and beta-chains were generated, allowing the induced heterodimerization of two different cytoplasmic tails. Our studies demonstrate that upon heterodimerization with the gp130 cytoplasmic region, the cytoplasmic parts of both LIFR and OSMR were critical for activation of an acute phase protein promoter in HepG2 hepatoma cells. The membrane-proximal region of LIFR or OSMR was crucial for the ability of such receptor complexes to induce DNA binding of STAT1 and STAT3 in COS-7 cells. Membrane-distal regions of LIFR and OSMR contributed to STAT activation even in the absence of gp130 STAT recruitment sites. We further show that the Janus kinases Jak1 and Jak2 constitutively associated with receptor constructs containing the cytoplasmic part of LIFR, OSMR, or gp130, respectively. Homodimers of the LIFR or OSMR cytoplasmic regions did not elicit responses in COS-7 cells but did in HepG2 cells and in MCF-7 breast carcinoma cells. Thus, in spite of extensive functional similarities, differential signaling abilities of gp130, LIFR, and OSMR may become evident in a cell-type-specific manner. [less ▲]

Detailed reference viewed: 112 (3 UL)
Peer Reviewed
See detailA single STAT recruitment module in a chimeric cytokine receptor complex is sufficient for STAT activation
Behrmann, Iris UL; Janzen, C.; Gerhartz, C. et al

in Journal of Biological Chemistry (1997), 272(8), 5269-74

We established a system of receptor chimeras that enabled us to induce heterodimerization of different cytoplasmic tails. Fusion constructs were created that are composed of the extracellular parts of the ... [more ▼]

We established a system of receptor chimeras that enabled us to induce heterodimerization of different cytoplasmic tails. Fusion constructs were created that are composed of the extracellular parts of the interleukin-5 receptor alpha and beta chains, respectively, and the transmembrane and intracellular parts of gp130, the signal transducing chain of the interleukin-6 receptor complex. In COS-7 transfectants we observed a dose-dependent interleukin-5-inducible STAT1 activation for which the presence of both the alpha and the beta chain chimera was needed. No STAT activity was detected if one of the cytoplasmic tails of the receptor complex was deleted, indicating that STAT activity resulted from a receptor dimer rather than from higher receptor aggregates. We further investigated whether dimerization of STAT1 depends on the juxtaposition of two STAT recruitment modules in a receptor complex. We show that a receptor dimer with only a single STAT1 docking site was still able to lead to STAT1 activation. This indicates that the formation of a paired set of STAT binding sites in a receptor complex is not the prerequisite for STAT factor dimerization. Our findings are discussed in view of alternative STAT dimerization models. [less ▲]

Detailed reference viewed: 105 (0 UL)