References of "Schmitt, Martina"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMiRNA-29: A microRNA family with tumor-suppressing and immune-modulating properties
Schmitt, Martina; Margue, Christiane UL; Behrmann, Iris UL et al

in Current Molecular Medicine (2012), 13(4), 572-585

MicroRNAs (miRNAs) are ubiquitously expressed small, non-coding RNAs that negatively regulate gene expression at a post-transcriptional level. So far, over 1000 miRNAs have been identified in human cells ... [more ▼]

MicroRNAs (miRNAs) are ubiquitously expressed small, non-coding RNAs that negatively regulate gene expression at a post-transcriptional level. So far, over 1000 miRNAs have been identified in human cells and their diverse functions in normal cell homeostasis and many different diseases have been thoroughly investigated during the past decade. MiR-29, one of the most interesting miRNA families in humans to date, consists of three mature members miR-29a, miR-29b and miR-29c, which are encoded in two genetic clusters. Members of this family have been shown to be silenced or down-regulated in many different types of cancer and have subsequently been attributed predominantly tumor-suppressing properties, albeit exceptions have been described where miR-29s have tumor-promoting functions. MiR-29 targets expression of diverse proteins like collagens, transcription factors, methyltransferases and others, which may partake in abnormal migration, invasion or proliferation of cells and may favor development of cancer. Furthermore, members of the miR-29 family can be activated by interferon signaling, which suggests a role in the immune system and in host-pathogen interactions, especially in response to viral infections. In this review, we summarize current knowledge on the genomic organization and regulation of the miR-29 family and we provide an overview of its implication in cancer suppression and promotion as well as in host immune responses. The numerous remarkable properties of these miRNAs and their often altered expression patterns might make the miR-29 family promising biomarkers and therapeutic targets for various diseases in future. © 2013 Bentham Science Publishers. [less ▲]

Detailed reference viewed: 136 (13 UL)
Full Text
Peer Reviewed
See detailDynamic regulation of microRNA expression following interferonγ- induced gene transcription
Reinsbach, Susanne UL; Nazarov, Petr V.; Philippidou, Demetra UL et al

in RNA Biology (2012), 9(7), 987-989

MicroRNAs are major players in post-transcriptional gene regulation. Even small changes in miRNA levels may have profound consequences for the expression levels of target genes. Hence, miRNAs themselves ... [more ▼]

MicroRNAs are major players in post-transcriptional gene regulation. Even small changes in miRNA levels may have profound consequences for the expression levels of target genes. Hence, miRNAs themselves need to be tightly, albeit dynamically, regulated. Here, we investigated the dynamic behavior of miRNAs over a wide time range following stimulation of melanoma cells with interferonγ (IFNγ), which activates the transcription factor STAT1. By applying several bioinformatic and statistical software tools for visualization and identification of differentially expressed miRNAs derived from time-series microarray experiments, 8.9% of 1105 miRNAs appeared to be directly or indirectly regulated by STAT1. Focusing on distinct dynamic expression patterns, we found that the majority of robust miRNA expression changes occurred in the intermediate time range (24-48 h). Three miRNAs (miR-27a, miR-30a and miR-34a) had a delayed regulation occurring at 72 h while none showed significant expression changes at early time points between 30 min and 6 h. Expression patterns of individual miRNAs were altered gradually over time or abruptly increased or decreased between two time points. Furthermore, we observed coordinated dynamic transcription of most miRNA clusters while few were found to be regulated independently of their genetic cluster. Most interestingly, several "star" or passenger strand sequences were specifically regulated over time while their "guide" strands were not. © 2012 Landes Bioscience. [less ▲]

Detailed reference viewed: 129 (16 UL)