References of "Schippke, Henning"
     in
Bookmark and Share    
Full Text
See detailMethodenentwicklung zur numerischen Strömungsanalyse von Freispiegelströmungen bei Schaufelwasserrädern
Schippke, Henning; Seidel, Christian; Dinkler, Dieter et al

Scientific Conference (2014, March)

Der Ausbau der Wasserkraft gewinnt im Kontext der Energiewende weltweit an Bedeutung. Neben der Turbinentechnologie erweisen sich Wasserräder im Hinblick auf ihre hohe ökologische Verträglichkeit und ihr ... [more ▼]

Der Ausbau der Wasserkraft gewinnt im Kontext der Energiewende weltweit an Bedeutung. Neben der Turbinentechnologie erweisen sich Wasserräder im Hinblick auf ihre hohe ökologische Verträglichkeit und ihr hohes ganzjähriges Arbeitsvermögen als besonders geeignet. Das sich drehende Wasserrad, umgeben von Wasser und Luft, stellt mechanisch ein gekoppeltes Drei- Feld-System bestehend aus einer Struktur und zwei Fluiden dar. Hinreichend genau ist es möglich, die Wasserradstruktur als Starrkörper zu beschreiben, während Luft und Wasser mit Hilfe der inkom- pressiblen Navier-Stokes Gleichungen gut modelliert werden können. Durch Anwendung der Raum-Zeit-Finite-Elemente-Methode zur Diskretisierung der inkompressiblen Navier-Stokes Gleichungen wird die Grenzfläche zwischen dem Starrkörper und den Fluiden explizit beschrieben und stets automatisch korrekt erfasst. Die Beschreibung der freien Wasseroberfläche als Grenzfläche zwischen den beiden Fluiden erfolgt implizit mit Hilfe der Level-Set Methode. Die Netzknoten der Fluid-Struktur-Grenzfläche verändern ihre Position infolge der Wasserraddrehung mit der Zeit, so dass ein Netzbewegungsalgorithmus notwendig ist. Die shear-slip mesh update method (SSMUM) ermöglicht als diskontinuierliches Netzbewegungsverfahren eine durchgehende Berechnung des Gesamtsystems, ohne dass das gesamte Gebiet neu vernetzt werden muss. Anhand verschiedener Testbeispiele wird die Güte der entwickelten numerischen Methode im Hinblick auf Ihre Erhaltungseigenschaften untersucht. Besonderes Augenmerk wird auf die Lösungsübertragung am shear-slip layer sowie auf die Abbildung der implizit beschriebenen freien Wasseroberfläche gelegt. [less ▲]

Detailed reference viewed: 131 (9 UL)
Full Text
Peer Reviewed
See detailMethodenentwicklung zur numerischen Strömungsanalyse von Schaufelwasserrädern
Schippke, Henning; Zilian, Andreas UL; Seidel, Christian et al

in PAMM (2013)

Es wird ein Berechnungsmodell vorgestellt, mit dem eine numerischen Analyse der Strömungsvorgänge innerhalb von Schau- felwasserrädern möglich ist. Der Arbeitsschwerpunkt liegt dabei auf der ... [more ▼]

Es wird ein Berechnungsmodell vorgestellt, mit dem eine numerischen Analyse der Strömungsvorgänge innerhalb von Schau- felwasserrädern möglich ist. Der Arbeitsschwerpunkt liegt dabei auf der strömungsmechanischen Optimierung von Hochleis- tungswasserrädern der Weiterentwickelten Wasserradtechnologie. In dem Berechnungsmodell werden die inkompressiblen Navier-Stokes-Gleichungen in den unabhängigen Variablen Geschwindigkeiten und Druck mit Hilfe der zeit-diskontinuierlichen Raum-Zeit-Finite-Elemente-Methode diskretisiert und die auftretende Gebietsveränderung infolge der sich drehenden Struk- tur mit der Shear-Slip Mesh Update Methode als diskontinuierlichem Netzbewegungsverfahren erfasst. [less ▲]

Detailed reference viewed: 85 (4 UL)
Full Text
See detailNumerical analysis of free-surface flow through rotating machines
Schippke, Henning; Zilian, Andreas UL

Presentation (2013)

In the context of the transformation process currently taking place in the energy production sector, energy gained from renewable power sources shall replace the present mixture, which mostly relies on ... [more ▼]

In the context of the transformation process currently taking place in the energy production sector, energy gained from renewable power sources shall replace the present mixture, which mostly relies on fossil burnings. Therefore, in the future most of the energy shall be gained by harvesting power from sun, wind or water, geothermal heat or biomass. In case of converting energy from wind into electrical power wind turbines are used in general, while hydropower turbines are the state-of-the-art machinery to derive energy from running water. In order to convert the potential energy from running water as well water wheels pose the method of choice. Turbines in air or water represent mechanically a two-field system, in which the structure of the turbine is surrounded by a streaming fluid. Due to the elasticity of the rotor blades the stresses of the fluid onto the structure deform the blades, which in return yield a time-dependent flow domain. Therefore turbines in a streaming fluid represent a typical example of fluid-structure interaction. Furthermore, in case of water wheels the surrounding air as third field and additional fluid phase comes into play introducing a free surface. In this contribution the governing equations of incompressible fluid flow are presented using primal variables and discretised via the space-time finite element method [3]. The discretised model equations of the fluid are stabilised using an SUPG/PSPG approach. Shape and test functions are continuous within the space-time slabs, while across the space- time slabs the shape and test functions are continuous only in space, but discontinuous in time yielding a time-discontinuous Galerkin approach. Due to the moving rotor blades a mesh moving technique needs to be incorporated into the computational set-up. Considering the occurring large but regular displacements of the flow boundary arising from the rotating rotor blades the shear-slip mesh update method (SSMUM) [1] as discontinuous mesh moving technique is applied. In case of water wheels the free surface is described implicitly via a Level-Set function [2] yielding a single fluid phase with almost discontinuous density and viscosity. The verification and validation of the developed numerical scheme is carried out with the help of computing classical benchmark problems as well as via a comparison to existing experimental data. [less ▲]

Detailed reference viewed: 85 (3 UL)
Full Text
See detailSpace-Time Shear-Slip Mesh Update Method for Fluid-Structure Interaction Problems
Schippke, Henning; Zilian, Andreas UL

Presentation (2013)

Many practical problems in engineering consist of a structure surrounded by a fluid. These are all from the theoretical point of view fluid-structure interaction problems, in which the movement of the ... [more ▼]

Many practical problems in engineering consist of a structure surrounded by a fluid. These are all from the theoretical point of view fluid-structure interaction problems, in which the movement of the structure influences the flow field of the fluid and vice versa. In this contribution the structure is described in a total Lagrangian representation based on velocities and the 2nd Piola-Kirchhoff stress state as primal variables in a hybrid-mixed formulation, while the fluid is modelled via the incompressible Navier-Stokes equations with velocities and pressure as unknowns. The governing equations of fluid and structural dynamics are uniformly discretised using space-time finite elements [1]. The discretised model equations of the fluid are stabilised using a SUPG/PSPG approach. Shape and test functions are continuous within the space-time slabs, while across the space- time slabs the shape and test functions are continuous only in space, but discontinuous in time yielding a time-discontinuous Galerkin approach. The space-time discretisation of the coupled system with velocities and pressure as remaining unknowns lays the basis for a mathematically profound analysis due to its methodical uniformity. During the mesh generation of the fluid-structure problem a fitting mesh at the conjoint interface of fluid and structure is generated ensuring natively the geometric continuity. In the discretised flow domain, which model equations are formulated in the Eulerian framework, a mesh-moving scheme needs to be applied to avoid severe mesh distortions. In case of large but regular structural displacements a discontinuous mesh-moving scheme like the Shear-Slip Mesh Update Method (SSMUM) is applicable [2]. In order to increase robustness and conservation behaviour of the classical SSMUM a modification based on the space-time discretisation of the problem described above is investigated. In the Space- Time SSMUM (ST-SSMUM) the alteration of the spatial connectivity takes place continuously in the space-time domain. By avoiding sudden changes in the spatial connectivity between two adjacent space-time slabs any difficulty in evaluating the jump term is circumvented. The properties of the introduced ST-SSMUM is shown by a computation of the flow field of a rotating impeller, which can be interpreted as a simplified water turbine or blood pump. [less ▲]

Detailed reference viewed: 110 (2 UL)
Full Text
Peer Reviewed
See detailSpace-time shear-slip mesh update method for fluid-structure interaction problems
Schippke, Henning; Zilian, Andreas UL

Scientific Conference (2012, September 14)

Space-time discretisations of physical problems involving moving and deforming bodies, boundaries and interfaces have been shown to offer advantageous properties while being methodologically uniform and ... [more ▼]

Space-time discretisations of physical problems involving moving and deforming bodies, boundaries and interfaces have been shown to offer advantageous properties while being methodologically uniform and flexible. Well-known phenomena which are ideally suited to be analysed by space-time methods, are fluid-structure interaction problems in general as well as fluid flows with subdomain phase boundaries or immersed moving objects. In this contribution a short overview of existing mesh- moving techniques is given within the framework of finite element discretisations of the incompressible Navier-Stokes equations in space and time. The investigation is based on a velocity-pressure formulation on the deforming space-time domain in combination with a GLS stabilisation of the balance of momentum as well as the conservation equation of mass. A modification of the shear-slip mesh update method in the framework of space-time finite element discretisation is presented leading to a continuous space-time mesh in the shear-slip layer. The modified mesh moving technique is applied to the classical flow situation of Poiseuille flow incorporating a rotating space-time fluid mesh. Its conservation properties and its quality regarding the approximated solution on moving and deforming meshes are investigated. [less ▲]

Detailed reference viewed: 70 (7 UL)
Full Text
Peer Reviewed
See detailModification of the Shear-Slip Mesh Update Method with Respect to Space-Time Finite Element Discretisation of Fluid Flows
Schippke, Henning; Zilian, Andreas UL

Scientific Conference (2012, April 27)

Space-time discretisations of physical problems involving moving and deforming bodies, boundaries and interfaces have been shown to offer advantageous properties while being methodologically uniform and ... [more ▼]

Space-time discretisations of physical problems involving moving and deforming bodies, boundaries and interfaces have been shown to offer advantageous properties while being methodologically uniform and flexible. Well-known phenomena which are ideally suited to be analysed by space-time methods, are fluid-structure interaction problems in general as well as fluid flows with subdomain phase boundaries or immersed moving objects. In this contribution a short overview of existing mesh- moving techniques is given within the framework of finite element discretisations of the incompressible Navier-Stokes equations in space and time. The investigation is based on a SUPG/PSPG velocity-pressure formulation on the deforming space-time domain. A modification of the shear-slip mesh update method in the framework of space-time finite element discretisation is presented leading to a continuous space-time mesh in the shear-slip layer. The modified mesh moving technique is applied to engineering problems with rotating space-time fluid meshes. Its conservation properties and its quality regarding the approximated solutions on moving and deforming meshes are investigated. [less ▲]

Detailed reference viewed: 98 (1 UL)
Full Text
See detailDevelopments in Mesh-Moving and Mesh-Update Schemes for Space-Time Finite Element Dicretisations of Fluid Flows
Schippke, Henning; Zilian, Andreas UL

Scientific Conference (2011)

Space-time discretisations of physical problems involving moving and deforming bodies, boundaries and interfaces have been shown to offer advantageous properties, while being methodologically uniform and ... [more ▼]

Space-time discretisations of physical problems involving moving and deforming bodies, boundaries and interfaces have been shown to offer advantageous properties, while being methodologically uniform and flexible. Well-known phenomena, which are ideally suited to be analysed by space-time methods, are fluid-structure interaction problems in general as well as fluid flows with subdomain phase boundaries or immersed moving objects. In this contribution existing mesh-moving and mesh-update techniques are comparatively discussed within the framework of finite element discretisations of the Navier-Stokes equations in space and time. The investigation is based on a SUPG/PSPG velocity-pressure formulation on the deforming space-time do- main. Developments of mesh reconnection at fluid-solid interfaces due to mesh-moving/reconnecting proce- dures for space-time discretisations of fluid flows are presented. Furthermore mesh-update/reconnecting techniques are examined occurring in engineering problems involving sliding or rotating space-time fluid meshes. The presented techniques are accompanied by numerical examples of translational fluid flow as well as fluid flow with immersed rotating fluid bodies. The quality of the approximative solution on the moving and deforming mesh as well as its conservation properties are investigated. [less ▲]

Detailed reference viewed: 67 (2 UL)