References of "Saraiva, Claudia 50032988"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailGeneration of two induced pluripotent stem cell lines and the corresponding isogenic controls from Parkinson's disease patients carrying the heterozygous mutations c.1290A > G (p.T351A) or c.2067A > G (p.T610A) in the RHOT1 gene encoding Miro1.
Chemla, Axel UL; Arena, Giuseppe UL; Saraiva, Claudia UL et al

in Stem cell research (2023), 69

Primary skin fibroblasts from two Parkinson's disease (PD) patients carrying distinct heterozygous mutations in the RHOT1 gene encoding Miro1, namely c.1290A > G (Miro1 p.T351A) and c.2067A > G (Miro1 p ... [more ▼]

Primary skin fibroblasts from two Parkinson's disease (PD) patients carrying distinct heterozygous mutations in the RHOT1 gene encoding Miro1, namely c.1290A > G (Miro1 p.T351A) and c.2067A > G (Miro1 p.T610A), were converted into induced pluripotent stem cells (iPSCs) by episomal reprogramming. The corresponding isogenic gene-corrected lines have been generated using CRISPR/Cas9 technology. Here, we provide a comprehensive characterization and quality assurance of both isogenic pairs, which will be used to study Miro1-related molecular mechanisms underlying neurodegeneration in iPSC-derived neuronal models (e.g., midbrain dopaminergic neurons and astrocytes). [less ▲]

Detailed reference viewed: 142 (3 UL)
Full Text
Peer Reviewed
See detailGeneralising from conventional pipelines using deep learning in high‑throughput screening workfows
Garcia Santa Cruz, Beatriz UL; Sölter, Jan; Gomez Giro, Gemma UL et al

in Scientific Reports (2022)

The study of complex diseases relies on large amounts of data to build models toward precision medicine. Such data acquisition is feasible in the context of high-throughput screening, in which the quality ... [more ▼]

The study of complex diseases relies on large amounts of data to build models toward precision medicine. Such data acquisition is feasible in the context of high-throughput screening, in which the quality of the results relies on the accuracy of the image analysis. Although state-of-the-art solutions for image segmentation employ deep learning approaches, the high cost of manually generating ground truth labels for model training hampers the day-to-day application in experimental laboratories. Alternatively, traditional computer vision-based solutions do not need expensive labels for their implementation. Our work combines both approaches by training a deep learning network using weak training labels automatically generated with conventional computer vision methods. Our network surpasses the conventional segmentation quality by generalising beyond noisy labels, providing a 25% increase of mean intersection over union, and simultaneously reducing the development and inference times. Our solution was embedded into an easy-to-use graphical user interface that allows researchers to assess the predictions and correct potential inaccuracies with minimal human input. To demonstrate the feasibility of training a deep learning solution on a large dataset of noisy labels automatically generated by a conventional pipeline, we compared our solution against the common approach of training a model from a small manually curated dataset by several experts. Our work suggests that humans perform better in context interpretation, such as error assessment, while computers outperform in pixel-by-pixel fne segmentation. Such pipelines are illustrated with a case study on image segmentation for autophagy events. This work aims for better translation of new technologies to real-world settings in microscopy-image analysis. [less ▲]

Detailed reference viewed: 213 (18 UL)
Full Text
Peer Reviewed
See detailFrom tech to bench: Deep Learning pipeline for image segmentation of high-throughput high-content microscopy data
Garcia Santa Cruz, Beatriz UL; Jarazo, Javier UL; Saraiva, Claudia UL et al

Poster (2019, November 29)

Automation of biological image analysis is essential to boost biomedical research. The study of complex diseases such as neurodegenerative diseases calls for big amounts of data to build models towards ... [more ▼]

Automation of biological image analysis is essential to boost biomedical research. The study of complex diseases such as neurodegenerative diseases calls for big amounts of data to build models towards precision medicine. Such data acquisition is feasible in the context of high-throughput screening in which the quality of the results relays on the accuracy of image analysis. Although the state-of-the-art solutions for image segmentation employ deep learning approaches, the high cost of manual data curation is hampering the real use in current biomedical research laboratories. Here, we propose a pipeline that employs deep learning not only to conduct accurate segmentation but also to assist with the creation of high-quality datasets in a less time-consuming solution for the experts. Weakly-labelled datasets are becoming a common alternative as a starting point to develop real-world solutions. Traditional approaches based on classical multimedia signal processing were employed to generate a pipeline specifically optimized for the high-throughput screening images of iPSC fused with rosella biosensor. Such pipeline produced good segmentation results but with several inaccuracies. We employed the weakly-labelled masks produced in this pipeline to train a multiclass semantic segmentation CNN solution based on U-net architecture. Since a strong class imbalance was detected between the classes, we employed a class sensitive cost function: Dice coe!cient. Next, we evaluated the accuracy between the weakly-labelled data and the trained network segmentation using double-blind tests conducted by experts in cell biology with experience in this type of images; as well as traditional metrics to evaluate the quality of the segmentation using manually curated segmentations by cell biology experts. In all the evaluations the prediction of the neural network overcomes the weakly-labelled data quality segmentation. Another big handicap that complicates the use of deep learning solutions in wet lab environments is the lack of user-friendly tools for non-computational experts such as biologists. To complete our solution, we integrated the trained network on a GUI built on MATLAB environment with non-programming requirements for the user. This integration allows conducting semantic segmentation of microscopy images in a few seconds. In addition, thanks to the patch-based approach it can be employed in images with different sizes. Finally, the human-experts can correct the potential inaccuracies of the prediction in a simple interactive way which can be easily stored and employed to re-train the network to improve its accuracy. In conclusion, our solution focuses on two important bottlenecks to translate leading-edge technologies in computer vision to biomedical research: On one hand, the effortless obtention of high-quality datasets with expertise supervision taking advantage of the proven ability of our CNN solution to generalize from weakly-labelled inaccuracies. On the other hand, the ease of use provided by the GUI integration of our solution to both segment images and interact with the predicted output. Overall this approach looks promising for fast adaptability to new scenarios. [less ▲]

Detailed reference viewed: 1132 (44 UL)