References of "Sandberg, Henrik"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailOnline Fault Diagnosis for Nonlinear Power Systems
Pan, Wei UL; Yuan, Ye; Sandberg, Henrik et al

in Automatica (2015), 55

In this paper, automatic fault diagnosis in large scale power networks described by second-order nonlinear swing equations is studied. This work focuses on a class of faults that occur in the transmission ... [more ▼]

In this paper, automatic fault diagnosis in large scale power networks described by second-order nonlinear swing equations is studied. This work focuses on a class of faults that occur in the transmission lines. Transmission line protection is an important issue in power system engineering because a large portion of power system faults is occurring in transmission lines. This paper presents a novel technique to detect, isolate and identify the faults on transmissions using only a small number of observations. We formulate the problem of fault diagnosis of nonlinear power network into a compressive sensing framework and derive an optimisationbased formulation of the fault identification problem. An iterative reweighted `1-minimisation algorithm is finally derived to solve the detection problem efficiently. Under the proposed framework, a real-time fault monitoring scheme can be built using only measurements of phase angles of nonlinear power networks. [less ▲]

Detailed reference viewed: 156 (14 UL)
Full Text
Peer Reviewed
See detailReal-time Fault Diagnosis for Large-Scale Nonlinear Power Networks
Pan, Wei UL; Yuan, Ye; Sandberg, Henrik et al

in The proceedings of the IEEE 52nd Annual Conference on Decision and Control (2013)

In this paper, automatic fault diagnosis in large scale power networks described by second-order nonlinear swing equations is studied. This work focuses on a class of faults that occur in the transmission ... [more ▼]

In this paper, automatic fault diagnosis in large scale power networks described by second-order nonlinear swing equations is studied. This work focuses on a class of faults that occur in the transmission lines. Transmission line protection is an important issue in power system engineering because a large portion of power system faults is occurring in transmission lines. This paper presents a novel technique to detect, isolate and identify the faults on transmissions using only a small number of observations. We formulate the problem of fault diagnosis of nonlinear power network into a compressive sensing framework and derive an optimisation-based formulation of the fault identification problem. An iterative reweighted ℓ1-minimisation algorithm is finally derived to solve the detection problem efficiently. Under the proposed framework, a real-time fault monitoring scheme can be built using only measurements of phase angles of nonlinear power networks. [less ▲]

Detailed reference viewed: 109 (0 UL)