References of "Salas, Miguel"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMachine Learning for Radio Resource Management in Multibeam GEO Satellite Systems
Ortiz Gomez, Flor de Guadalupe UL; Lei, Lei UL; Lagunas, Eva UL et al

in Electronics (2022), 11(7), 992

Satellite communications (SatComs) systems are facing a massive increase in traffic demand. However, this increase is not uniform across the service area due to the uneven distribution of users and ... [more ▼]

Satellite communications (SatComs) systems are facing a massive increase in traffic demand. However, this increase is not uniform across the service area due to the uneven distribution of users and changes in traffic demand diurnal. This problem is addressed by using flexible payload architectures, which allow payload resources to be flexibly allocated to meet the traffic demand of each beam. While optimization-based radio resource management (RRM) has shown significant performance gains, its intense computational complexity limits its practical implementation in real systems. In this paper, we discuss the architecture, implementation and applications of Machine Learning (ML) for resource management in multibeam GEO satellite systems. We mainly focus on two systems, one with power, bandwidth, and/or beamwidth flexibility, and the second with time flexibility, i.e., beam hopping. We analyze and compare different ML techniques that have been proposed for these architectures, emphasizing the use of Supervised Learning (SL) and Reinforcement Learning (RL). To this end, we define whether training should be conducted online or offline based on the characteristics and requirements of each proposed ML technique and discuss the most appropriate system architecture and the advantages and disadvantages of each approach. [less ▲]

Detailed reference viewed: 80 (17 UL)
Full Text
Peer Reviewed
See detailCooperative Multi-Agent Deep Reinforcement Learning for Resource Management in Full Flexible VHTS Systems
Ortiz Gomez, Flor de Guadalupe UL; Tarchi, Daniele; Martinez, Ramon et al

in IEEE Transactions on Cognitive Communications and Networking (2022), 8(1),

Very high throughput satellite (VHTS) systems are expected to have a huge increase in traffic demand in the near future. Nevertheless, this increase will not be uniform over the entire service area due to ... [more ▼]

Very high throughput satellite (VHTS) systems are expected to have a huge increase in traffic demand in the near future. Nevertheless, this increase will not be uniform over the entire service area due to the non-uniform distribution of users and changes in traffic demand during the day. This problem is addressed by using flexible payload architectures, which allow the allocation of payload resources flexibly to meet the traffic demand of each beam, leading to dynamic resource management (DRM) approaches. However, DRM adds significant complexity to VHTS systems, so in this paper we discuss the use of one reinforcement learning (RL) algorithm and two deep reinforcement learning (DRL) algorithms to manage the resources available in flexible payload architectures for DRM. These algorithms are Q-Learning (QL), Deep Q-Learning (DQL) and Double Deep Q-Learning (DDQL) which are compared based on their performance, complexity and added latency. On the other hand, this work demonstrates the superiority a cooperative multiagent (CMA) decentralized distribution has over a single agent (SA). [less ▲]

Detailed reference viewed: 40 (10 UL)