References of "Sölter, Jan"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailGeneralising from conventional pipelines using deep learning in high‑throughput screening workfows
Garcia Santa Cruz, Beatriz UL; Sölter, Jan; Gomez Giro, Gemma UL et al

in Scientific Reports (2022)

The study of complex diseases relies on large amounts of data to build models toward precision medicine. Such data acquisition is feasible in the context of high-throughput screening, in which the quality ... [more ▼]

The study of complex diseases relies on large amounts of data to build models toward precision medicine. Such data acquisition is feasible in the context of high-throughput screening, in which the quality of the results relies on the accuracy of the image analysis. Although state-of-the-art solutions for image segmentation employ deep learning approaches, the high cost of manually generating ground truth labels for model training hampers the day-to-day application in experimental laboratories. Alternatively, traditional computer vision-based solutions do not need expensive labels for their implementation. Our work combines both approaches by training a deep learning network using weak training labels automatically generated with conventional computer vision methods. Our network surpasses the conventional segmentation quality by generalising beyond noisy labels, providing a 25% increase of mean intersection over union, and simultaneously reducing the development and inference times. Our solution was embedded into an easy-to-use graphical user interface that allows researchers to assess the predictions and correct potential inaccuracies with minimal human input. To demonstrate the feasibility of training a deep learning solution on a large dataset of noisy labels automatically generated by a conventional pipeline, we compared our solution against the common approach of training a model from a small manually curated dataset by several experts. Our work suggests that humans perform better in context interpretation, such as error assessment, while computers outperform in pixel-by-pixel fne segmentation. Such pipelines are illustrated with a case study on image segmentation for autophagy events. This work aims for better translation of new technologies to real-world settings in microscopy-image analysis. [less ▲]

Detailed reference viewed: 193 (18 UL)
Full Text
Peer Reviewed
See detailRapid artificial intelligence solutions in a pandemic—The COVID-19-20 Lung CT Lesion Segmentation Challenge
Roth, Holger R.; Xu, Ziyue; Diez, Carlos Tor et al

in Medical Image Analysis (2022)

Artificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of ... [more ▼]

Artificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 lesions in chest computed tomography (CT) might play an important role in the monitoring and management of the disease. We organized an international challenge and competition for the development and comparison of AI algorithms for this task, which we supported with public data and state-of-the-art benchmark methods. Board Certified Radiologists annotated 295 public images from two sources (A and B) for algorithms training (n=199, source A), validation (n=50, source A) and testing (n=23, source A; n=23, source B). There were 1,096 registered teams of which 225 and 98 completed the validation and testing phases, respectively. The challenge showed that AI models could be rapidly designed by diverse teams with the potential to measure disease or facilitate timely and patient-specific interventions. This paper provides an overview and the major outcomes of the COVID-19 Lung CT Lesion Segmentation Challenge - 2020. [less ▲]

Detailed reference viewed: 19 (2 UL)
Full Text
See detailLeveraging state-of-the-art architectures by enriching training information - a case study
Sölter, Jan; Proverbio, Daniele; Baniasadi, Mehri et al

Speeches/Talks (2021)

Our working hypothesis is that key factors in COVID-19 imaging are the available imaging data and their label noise and confounders, rather than network architectures per se. Thus, we applied existing ... [more ▼]

Our working hypothesis is that key factors in COVID-19 imaging are the available imaging data and their label noise and confounders, rather than network architectures per se. Thus, we applied existing state-of-the-art convolution neural network frameworks based on the U-Net architecture, namely nnU-Net [3], and focused on leveraging the available training data. We did not apply any pre-training nor modi ed the network architecture. First, we enriched training information by generating two additional labels for lung and body area. Lung labels were created with a public available lung segmentation network and weak body labels were generated by thresholding. Subsequently, we trained three di erent multi-class networks: 2-label (original background and lesion labels), 3-label (additional lung label) and 4-label (additional lung and body label). The 3-label obtained the best single network performance in internal cross-validation (Dice-Score 0.756) and on the leaderboard (Dice- Score 0.755, Haussdor 95-Score 57.5). To improve robustness, we created a weighted ensemble of all three models, with calibrated weights to optimise the ranking in Dice-Score. This ensemble achieved a slight performance gain in internal cross-validation (Dice-Score 0.760). On the validation set leaderboard, it improved our Dice-Score to 0.768 and Haussdor 95- Score to 54.8. It ranked 3rd in phase I according to mean Dice-Score. Adding unlabelled data from the public TCIA dataset in a student-teacher manner signi cantly improved our internal validation score (Dice-Score of 0.770). However, we noticed partial overlap between our additional training data (although not human-labelled) and  nal test data and therefore submitted the ensemble without additional data, to yield realistic assessments. [less ▲]

Detailed reference viewed: 41 (9 UL)