References of "Rogers, Keith D."
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailFormation of Cu3BiS3 thin films via sulfurization of Bi–Cu metal precursors
Colombara, Diego UL; Peter, Laurence M.; Hutchings, Kyle et al

in Thin Solid Films (2012), 520(16), 51655171

Thin films of Cu3BiS3 have been produced by conversion of stacked and co-electroplated Bi–Cu metal precursors in the presence of elemental sulfur vapor. The roles of sulfurization temperature and heating ... [more ▼]

Thin films of Cu3BiS3 have been produced by conversion of stacked and co-electroplated Bi–Cu metal precursors in the presence of elemental sulfur vapor. The roles of sulfurization temperature and heating rate in achieving single-phase good quality layers have been explored. The potential loss of Bi during the treatments has been investigated, and no appreciable compositional difference was found between films sulfurized at 550 °C for up to 16 h. The structural, morphological and photoelectrochemical properties of the layers were investigated in order to evaluate the potentials of the compound for application in thin film photovoltaics. [less ▲]

Detailed reference viewed: 128 (11 UL)
Full Text
Peer Reviewed
See detailThermochemical and kinetic aspects of the sulfurization of Cu–Sb and Cu–Bi thin films
Colombara, Diego UL; Peter, Laurence M.; Rogers, Keith D. et al

in Journal of Solid State Chemistry (2011)

CuSbS2 and Cu3BiS3 are being investigated as part of a search for new absorber materials for photovoltaic devices. Thin films of these chalcogenides were produced by conversion of stacked and co ... [more ▼]

CuSbS2 and Cu3BiS3 are being investigated as part of a search for new absorber materials for photovoltaic devices. Thin films of these chalcogenides were produced by conversion of stacked and co-electroplated metal precursor layers in the presence of elemental sulfur vapour. Ex-situ XRD and SEM/EDS analyses of the processed samples were employed to study the reaction sequence with the aim of achieving compact layer morphologies. A new “Time-Temperature-Reaction” (TTR) diagram and modified Pilling–Bedworth coefficients have been introduced for the description and interpretation of the reaction kinetics. For equal processing times, the minimum temperature required for CuSbS2 to appear is substantially lower than for Cu3BiS3, suggesting that interdiffusion across the interfaces between the binary sulfides is a key step in the formation of the ternary compounds. The effects of the heating rate and sulfur partial pressure on the phase evolution as well as the potential losses of Sb and Bi during the processes have been investigated experimentally and the results related to the equilibrium pressure diagrams obtained via thermochemical computation. [less ▲]

Detailed reference viewed: 98 (6 UL)
Full Text
Peer Reviewed
See detailFormation of CuSbS2 and CuSbSe2 thin films via chalcogenisation of Sb–Cu metal precursors
Colombara, Diego UL; Peter, Laurence M.; Rogers, Keith D. et al

in Thin Solid Films (2011), 519(21), 74387443

Due to the availability and low cost of the elements, the ternary Cu–Sb–S and Cu–Sb–Se semiconductor systems are being studied as sustainable alternative absorber materials to replace CuIn(Ga)(S,Se)2 in ... [more ▼]

Due to the availability and low cost of the elements, the ternary Cu–Sb–S and Cu–Sb–Se semiconductor systems are being studied as sustainable alternative absorber materials to replace CuIn(Ga)(S,Se)2 in thin film photovoltaic applications. Simple evaporation of the metal precursors followed by annealing in a chalcogen environment has been employed in order to test the feasibility of converting stacked metallic layers into the desired compounds. Other samples have been produced from aqueous solutions by electrochemical methods that may be suitable for scale-up. It was found that the minimum temperature required for the complete conversion of the precursors into the ternary chalcogen is 350 °C, while binary phase separation occurs at lower temperatures. The new materials have been characterised by structural, electrical and photoelectrochemical techniques in order to establish their potential as absorber layer materials for photovoltaic applications. The photoactive films consisting of CuSbS2 and CuSbSe2 exhibit band-gap energies of ~ 1.5 eV and ~ 1.2 eV respectively, fulfilling the Shockley–Queisser requirements for the efficient harvesting of the solar spectrum. [less ▲]

Detailed reference viewed: 134 (4 UL)