![]() ; ; Tkatchenko, Alexandre ![]() in Physical Review. B, Condensed Matter and Materials Physics (2020) Detailed reference viewed: 126 (2 UL)![]() ; ; et al in Science Advances (2019), 5(1), 0456 Recent advances in measuring van der Waals (vdW) interactions have probed forces on molecules at nanometric separations from metal surfaces and demonstrated the importance of infrared nonlocal ... [more ▼] Recent advances in measuring van der Waals (vdW) interactions have probed forces on molecules at nanometric separations from metal surfaces and demonstrated the importance of infrared nonlocal polarization response and temperature effects, yet predictive theories for these systems remain lacking. We present a theoretical framework for computing vdW interactions among molecular structures, accounting for geometry, short-range electronic delocalization, dissipation, and collective nuclear vibrations (phonons) at atomic scales, along with long-range electromagnetic interactions in arbitrary macroscopic environments. We primarily consider experimentally relevant low-dimensional carbon allotropes, including fullerenes, carbyne, and graphene, and find that phonons couple strongly with long-range electromagnetic fields depending on molecular dimensionality and dissipation, especially at nanometric scales, creating delocalized phonon polaritons that substantially modify infrared molecular response. These polaritons, in turn, alter vdW interaction energies between molecular and macroscopic structures, producing nonmonotonic power laws and nontrivial temperature variations at nanometric separations feasible in current experiments. [less ▲] Detailed reference viewed: 117 (15 UL)![]() ; ; Tkatchenko, Alexandre ![]() in Physical Review Letters (2018), 121 Detailed reference viewed: 178 (1 UL)![]() ; ; Tkatchenko, Alexandre ![]() in Physical Review Letters (2017), 118(1), 266802 We present an approach for computing long-range van der Waals (vdW) interactions between complex molecular systems and arbitrarily shaped macroscopic bodies, melding atomistic treatments of electronic ... [more ▼] We present an approach for computing long-range van der Waals (vdW) interactions between complex molecular systems and arbitrarily shaped macroscopic bodies, melding atomistic treatments of electronic fluctuations based on density functional theory in the former with continuum descriptions of strongly shape dependent electromagnetic fields in the latter, thus capturing many-body and multiple scattering effects to all orders. Such a theory is especially important when considering vdW interactions at mesoscopic scales, i.e., between molecules and structured surfaces with features on the scale of molecular sizes, in which case the finite sizes, complex shapes, and resulting nonlocal electronic excitations of molecules are strongly influenced by electromagnetic retardation and wave effects that depend crucially on the shapes of surrounding macroscopic bodies. We show that these effects together can modify vdW interaction energies and forces, as well as molecular shapes deformed by vdW interactions, by orders of magnitude compared to previous treatments based on Casimir-Polder, nonretarded, or pairwise approximations, which are valid only at macroscopically large or atomic-scale separations or in dilute insulating media, respectively. [less ▲] Detailed reference viewed: 388 (1 UL) |
||