![]() ; ; Francis, Olivier ![]() in Metrologia (2013), 50(5), 452 It has been recommended that the relative standard uncertainty of the numerical value of the Planck constant required for the redefinition of the kilogram should not exceed 2 × 10 −8 . To reach this goal ... [more ▼] It has been recommended that the relative standard uncertainty of the numerical value of the Planck constant required for the redefinition of the kilogram should not exceed 2 × 10 −8 . To reach this goal using experiments based on a watt balance, the free-fall acceleration ( g ) traceable to the SI, at a given point and a given time, needs to be known with a sufficiently small uncertainty well below 2 × 10 −8 . Reducing the uncertainty in g allows the other uncertainties related to the watt balance to be increased. Instead of a simultaneous operation of an absolute gravimeter with a watt balance, we propose an alternative approach and demonstrate that a standard uncertainty below 5 µGal (relative uncertainty of 5 × 10 −9 ) is reachable under the conditions at BIPM. Further decreasing the uncertainty could significantly increase commitments in terms of personnel and equipment and would not significantly improve the uncertainty targeted for the BIPM watt balance experiment. A 5 µGal uncertainty might also satisfy the needs of other watt balance experiments underway or planned. In our approach we combine the following information: (1) the Key Comparison Reference Values obtained from the CCM.G-K1, a key comparison carried out in the frame of the International Comparison of Absolute Gravimeters in 2009 (ICAG2009); (2) the accurate gravity network established using the qualified absolute and relative gravimeters; (3) temporal gravity variations based on observed Earth-tide parameters and modelled effects of polar motion and atmospheric mass redistribution; (4) uncertainty estimates that account for non-modelled effects; (5) the option to carry out absolute gravity measurements once every one or two years with two or more gravimeters for monitoring the stability of the gravity field at the BIPM. [less ▲] Detailed reference viewed: 146 (1 UL)![]() ; ; et al in Metrologia (2012), 49(6), 666 The 8th International Comparison of Absolute Gravimeters (ICAG2009) took place at the headquarters of the International Bureau of Weights and Measures (BIPM) from September to October 2009. It was the ... [more ▼] The 8th International Comparison of Absolute Gravimeters (ICAG2009) took place at the headquarters of the International Bureau of Weights and Measures (BIPM) from September to October 2009. It was the first ICAG organized as a key comparison in the framework of the CIPM Mutual Recognition Arrangement of the International Committee for Weights and Measures (CIPM MRA) (CIPM 1999). ICAG2009 was composed of a Key Comparison (KC) as defined by the CIPM MRA, organized by the Consultative Committee for Mass and Related Quantities (CCM) and designated as CCM.G-K1. Participating gravimeters and their operators came from national metrology institutes (NMIs) or their designated institutes (DIs) as defined by the CIPM MRA. A Pilot Study (PS) was run in parallel in order to include gravimeters and their operators from other institutes which, while not signatories of the CIPM MRA, nevertheless play important roles in international gravimetry measurements. The aim of the CIPM MRA is to have international acceptance of the measurement capabilities of the participating institutes in various fields of metrology. The results of CCM.G-K1 thus constitute an accurate and consistent gravity reference traceable to the SI (International System of Units), which can be used as the global basis for geodetic, geophysical and metrological observations of gravity. The measurements performed afterwards by the KC participants can be referred to the international metrological reference, i.e. they are SI-traceable. The ICAG2009 was complemented by a number of associated measurements: the Relative Gravity Campaign (RGC2009), high-precision levelling and an accurate gravity survey in support of the BIPM watt balance project. The major measurements took place at the BIPM between July and October 2009. Altogether 24 institutes with 22 absolute gravimeters (one of the 22 AGs was ultimately withdrawn) and nine relative gravimeters participated in the ICAG/RGC campaign. This paper is focused on the absolute gravity campaign. We review the history of the ICAGs and present the organization, data processing and the final results of the ICAG2009. After almost thirty years of hosting eight successive ICAGs, the CIPM decided to transfer the responsibility for piloting the future ICAGs to NMIs, although maintaining a supervisory role through its Consultative Committee for Mass and Related Quantities. [less ▲] Detailed reference viewed: 169 (23 UL)![]() ; Francis, Olivier ![]() in Metrologia (2011), 48 Detailed reference viewed: 122 (6 UL)![]() ; ; et al in Mertikas, Stelios P. (Ed.) Gravity, Geoid and Earth Observation (2010) Detailed reference viewed: 187 (18 UL)![]() ![]() ; Francis, Olivier ![]() ![]() in Metrologia (2001), 38 The fifth in the series of International Comparisons of Absolute Gravimeters (ICAG) was held at the Bureau International des Poids et Measures (BIPM) in November 1997. Fifteen absolute gravimeters ... [more ▼] The fifth in the series of International Comparisons of Absolute Gravimeters (ICAG) was held at the Bureau International des Poids et Measures (BIPM) in November 1997. Fifteen absolute gravimeters participated in the comparison. The mean gravity value obtained at station A (0.9 m) at the BIPM was found to be 980 925 707.8 µGal with a standard uncertainty of 2.8 µGal. This is consistent with the results obtained in previous comparisons at this site. Conclusions based on the analysis of the present results and proposals for future activities are presented. [less ▲] Detailed reference viewed: 91 (2 UL) |
||