References of "Rinaldi, Marco 50022015"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMixed-fleet single-terminal bus scheduling problem: Modelling, solution scheme and potential applications
Rinaldi, Marco UL; Picarelli, Erika UL; D'Ariano, Andrea et al

in Omega: the International Journal of Management Science (in press)

Reducing pollutant emissions and promoting sustainable mobility solutions, including Public Transport (PT), are increasingly becoming key objectives for policymakers worldwide. In this work we develop an ... [more ▼]

Reducing pollutant emissions and promoting sustainable mobility solutions, including Public Transport (PT), are increasingly becoming key objectives for policymakers worldwide. In this work we develop an optimal vehicle scheduling approach for next generation PT systems, considering the instance of mixed electric / hybrid fleet. Our objective is that of investigating to what extent electrification, coupled with optimal fleet management, can yield operational cost savings for PT operators. We propose a Mixed In- teger Linear Program (MILP) to address the problem of optimal scheduling of a mixed fleet of electric and hybrid / non-electric buses, coupled with an ad-hoc decomposition scheme aimed at enhancing the scalability of the proposed MILP. Two case studies arising from the PT network of the city of Luxem- bourg are employed in order to validate the model; sensitivity analysis to fleet design parameters is performed, specifically in terms of fleet size and fleet composition. Conclusions point to the fact that careful modelling and handling of mixed-fleet conditions are necessary to achieve operational savings, and that marginal savings gradually reduce as more conventional buses are replaced by their electric counterparts. We believe the methodology proposed may be a key part of advanced decision support systems for policymakers and operators that are dealing with the on-going transition from conventional bus fleets towards greener transport solutions. [less ▲]

Detailed reference viewed: 53 (4 UL)
Full Text
Peer Reviewed
See detailMixed hybrid and electric bus dynamic fleet management in urban networks: a model predictive control approach
Rinaldi, Marco UL; Picarelli, Erika UL; D'Ariano, Andrea et al

Scientific Conference (2019, June)

Abstract—Reducing pollutant emissions and promoting sustainable mobility solutions, including Public Transport, are increasingly becoming key objectives for policymakers worldwide. In order to jointly ... [more ▼]

Abstract—Reducing pollutant emissions and promoting sustainable mobility solutions, including Public Transport, are increasingly becoming key objectives for policymakers worldwide. In order to jointly achieve these goals, careful consideration should be put on the operational cost and management of PT services, in order to promote the adoption of green mobility solutions and advanced management techniques by operators. In this work we develop a dynamic fleet management approach for next generation Public Transportation systems, considering the instance of mixed electric / hybrid fleet. Our objective is that of investigating to what extent electrification, coupled with optimal fleet management, can yield operational cost savings for PT operators, explicitly considering real-time disturbances, including delays, service disruptions etc. We propose a Mixed Integer Linear Program to address the problem of optimal scheduling of a mixed fleet of electric and hybrid / non-electric buses, and employ it as predictor in a Model Predictive Control approach. Test results based upon a real-life scenario showcase how the proposed approach is indeed capable of yielding a sizable reduction in operational costs, even when considerable disturbances arise from the underlying system. [less ▲]

Detailed reference viewed: 32 (4 UL)
Full Text
Peer Reviewed
See detailMixed hybrid and electric bus dynamic fleet management in urban networks: a model predictive control approach
Rinaldi, Marco UL; Picarelli, Erika; Laskaris, Georgios UL et al

Scientific Conference (2019, January)

Reducing pollutant emissions and promoting sustainable mobility solutions, including Public Transport, are increasingly becoming key objectives for policymakers worldwide. In order to jointly achieve ... [more ▼]

Reducing pollutant emissions and promoting sustainable mobility solutions, including Public Transport, are increasingly becoming key objectives for policymakers worldwide. In order to jointly achieve these goals, careful consideration should be put on the operational cost and management of PT services, in order to promote the adoption of green mobility solutions and advanced management techniques by operators. In this work we develop a dynamic fleet management approach for next generation Public Transportation systems, considering the instance of mixed electric / hybrid fleet. Our objective is that of investigating to what extent electrification, coupled with optimal fleet management, can yield operational cost savings for PT operators, explicitly considering real-time disturbances, including delays, service disruptions etc. We propose a Mixed Integer Linear Program to address the problem of optimal scheduling of a mixed fleet of electric and hybrid / non-electric buses, and employ it as predictor in a Model Predictive Control approach. Test results based upon a real-life scenario showcase how the proposed approach is indeed capable of yielding a sizable reduction in operational costs, even when considerable disturbances arise from the underlying system. [less ▲]

Detailed reference viewed: 147 (7 UL)
Full Text
Peer Reviewed
See detailOptimal dispatching of electric and hybrid buses subject to scheduling and charging constraints
Rinaldi, Marco UL; Parisi, Federico; Laskaris, Georgios UL et al

Scientific Conference (2018, November)

We consider the problem of optimally determining the sequence of electric and hybrid buses departing from a multi-line bus terminal, considering both service constraints (schedule adherence) and energy ... [more ▼]

We consider the problem of optimally determining the sequence of electric and hybrid buses departing from a multi-line bus terminal, considering both service constraints (schedule adherence) and energy constraints (electric bus charging status, bus recharging scheduling in capacitated facilities). The problem is formulated as a Mixed Integer Linear Program, with the objective of minimizing the total operational cost for the bus lines in question. System dynamics are captured by practical sets of constraints, ranging from scheduling adherence to discharge- recharge dynamics. Individual operational costs at the bus level and at the trip level are fully parametrized, allowing for extensive sensitivity analysis. We investigate a real-life case study based on the city of Luxembourg, where two charging stations have been installed in the central station’s bus terminal. Experimental results show that, while full electrification is indeed possible, the required fleet size depends strongly on the given line(s) timetable. [less ▲]

Detailed reference viewed: 72 (5 UL)
Full Text
Peer Reviewed
See detailControllability of transportation networks
Rinaldi, Marco UL

in Transportation Research. Part B, Methodological (2018), 118

Network-wide traffic control policies determine the optimal values for the different kinds of controllers equipped on a transportation network, with the objective of reducing de- lays and congestion ... [more ▼]

Network-wide traffic control policies determine the optimal values for the different kinds of controllers equipped on a transportation network, with the objective of reducing de- lays and congestion, improving safety and reaching a target Level of Service. While models and algorithms for these problems have been extensively studied in literature, little at- tention has been devoted to investigating whether/how different locations, kinds (pricing controllers, traffic lights, ...) and amounts of controllers in a network affect the overall performance of network-wide schemes. In this work, we adapt the control-theoretical approach of controllability of complex networks to the specific instance of transportation networks, considering both propaga- tion/spillback dynamics and users’ behavior in terms of route choice. Thanks to the newly developed methodology, we then provide exact solutions to the Full Controllability Pric- ing Controller Location Problem for transportation networks. Comparing different pricing controller location policies through two artificial test cases, we empirically demonstrate how indeed the amount and kind of controllers in a network strongly affect the level of performance reachable by network-wide control policies, specifically in terms of Total Cost minimization. [less ▲]

Detailed reference viewed: 45 (4 UL)
Full Text
Peer Reviewed
See detailReal time multiline holding control for networks with shared transit corridor
Laskaris, Georgios UL; Cats, Oded; Jenelius, Erik et al

Scientific Conference (2018, September 05)

Detailed reference viewed: 32 (2 UL)
Peer Reviewed
See detailDecompositions of the optimal dispatching problem of electric and electric-hybrid buses with energy constraints for Luxembourg City
Picarelli, Erika; Rinaldi, Marco UL; Viti, Francesco UL et al

Scientific Conference (2018, September)

We are a team of engineers working on a concrete project of Mobility in Luxembourg. We want to solve the problem of optimally determining the sequence of electric and hybrid electric buses, considering ... [more ▼]

We are a team of engineers working on a concrete project of Mobility in Luxembourg. We want to solve the problem of optimally determining the sequence of electric and hybrid electric buses, considering both service constraints (schedule adherence) and energy constraints (electric bus charging status, bus recharging scheduling in capacitated facilities) and at the same time ensure a high level of quality of service for the user satisfaction. The problem is formulated as a Mixed Integer Linear Program, with the objective of minimizing the total operational cost for the bus lines in question. System dynamics are captured by twenty sets of constraints, ranging from scheduling adherence to discharge-recharge dynamics. Individual operational costs at the bus level (cost of running an electric / non-electric bus per km, cost of recharging) and at the trip level (penalty due to failed schedule adherence) are fully parametrised, allowing for extensive sensitivity analysis. We investigate a real-life case study based in the city of Luxembourg, where the objective is to reach the all-electric mode for principal urban buses network. Through the model we investigate: the minimum amount of electric buses necessary to perform a day’s schedule for two currently partially electrified lines, without resorting to conventional internal combustion alternatives; the impact of electrifying two additional lines, specifically considering the trade-offs related to either adding new buses or new charging stations at the bus terminal. Finally, we studied how to best decompose the overall problem in several smaller problems, to be able to solve also realistic scenarios and using large real data sets from the Mobility Data owner of Luxembourg. We analysed and compared two kinds of decomposition: a bus line-based decomposition, and a time-based decomposition. [less ▲]

Detailed reference viewed: 48 (5 UL)
Full Text
Peer Reviewed
See detailControllability of transportation networks
Rinaldi, Marco UL; Viti, Francesco UL

Scientific Conference (2018, September)

Detailed reference viewed: 43 (0 UL)
Full Text
See detailA holding control strategy for diverging bus lines
Laskaris, Georgios UL; Cats, Oded; Jenelius, Erik et al

Scientific Conference (2018, July 24)

We introduce a holding criterion for network configurations with lines that operate jointly along a common corridor and then individually diverge. The proposed holding decision rule accounts for all ... [more ▼]

We introduce a holding criterion for network configurations with lines that operate jointly along a common corridor and then individually diverge. The proposed holding decision rule accounts for all different passengers groups in the overlapping segment and takes care of the transition to individual line operation. The holding rule is evaluated using simulation for different demand levels and segmentations and compared with other control schemes for a real-world network. Results show that gains in overall network performance as well as for specific passenger groups can be achieved under specific demand distributions. [less ▲]

Detailed reference viewed: 46 (5 UL)
Peer Reviewed
See detailOptimal multi-line bus dispatching at terminals with electric charging scheduling constraints
Rinaldi, Marco UL; Parisi, Federico; D'Ariano, Andrea et al

Scientific Conference (2018, July)

We consider the problem of optimally determining the sequence of electric and conventional internal combustion buses departing from a multi-line bus terminal, considering both service constraints ... [more ▼]

We consider the problem of optimally determining the sequence of electric and conventional internal combustion buses departing from a multi-line bus terminal, considering both service constraints (schedule adherence) and energy constraints (electric bus charging status, bus recharging scheduling in capacitated facilities). The problem is formulated as a Mixed Integer Linear Program, with the objective of minimizing the total operational cost for the bus lines in question. System dynamics are captured by twenty sets of constraints, ranging from scheduling adherence to discharge-recharge dynamics. Individual operational costs at the bus level (cost of running an electric / non electric bus per km, cost of recharging) and at the trip level (penalty due to failed schedule adherence) are fully parametrised, allowing for extensive sensitivity analysis. We investigate a real-life case study based in the city of Luxembourg, where two charging stations have been installed in the central station’s bus terminal. Through the model we investigate: i) the minimum amount of electric buses necessary to perform a day’s schedule for two currently partially electrified lines, without resorting to conventional internal combustion alternatives; ii) the impact of electrifying two additional lines, specifically considering the trade-offs related to either adding new buses or new charging stations at the bus terminal. [less ▲]

Detailed reference viewed: 67 (9 UL)
Full Text
Peer Reviewed
See detailAssessing the performance of coordinated predictive control strategies on urban-motorway networks
Rinaldi, Marco UL; Viti, Francesco UL

in IFAC-PapersOnLine (2018, July), 51(9), 285-290

Coordination and integration of different traffic control policies have been of considerable interest in research in the last decades and, recently, have been object of large scale implementation trials ... [more ▼]

Coordination and integration of different traffic control policies have been of considerable interest in research in the last decades and, recently, have been object of large scale implementation trials. In the setting of peri-urban motorway systems, coordination of various kinds of controllers must however be accompanied by accurate prediction of both propagation of flows and queues in the network, as well as the users’ response in terms of route choice. In this paper, we showcase through a real-life case study how coordination and prediction are both essential when performing hybrid urban-motorway control. Simulation results of a Model Predictive Control application are compared to simpler local control approaches, and the impact of coordinated intersection control and, additionally, Ramp Metering is evaluated. [less ▲]

Detailed reference viewed: 44 (1 UL)
Full Text
Peer Reviewed
See detailVulnerability analysis of network observability in link flow inference problems
Rinaldi, Marco UL; Viti, Francesco UL

Scientific Conference (2018, January)

Detailed reference viewed: 15 (0 UL)
Full Text
Peer Reviewed
See detailMultiline holding based control for lines merging to a shared transit corridor
Laskaris, Georgios UL; Cats, Oded; Jenelius, Erik et al

in Transportmetrica B: Transport Dynamics (2018)

In transit corridors, multiple lines share a sequence of consecutive stops to provide higher joint frequency in higher demand areas. A key challenge is to coordinate the transition from single line to ... [more ▼]

In transit corridors, multiple lines share a sequence of consecutive stops to provide higher joint frequency in higher demand areas. A key challenge is to coordinate the transition from single line to joint operation. A holding control strategy aimed at minimizing passenger travel times is introduced for lines merging into a shared corridor, accounting for the coordination of vehicle arrivals from the merging lines as well as the regularity of each line. The criterion is tested using an artificial network and a real-world network to analyze the impact of demand distribution and compare cooperative versus single line control. We illustrate how the real-time strategy yields overall passenger gains, depending on the composition of different user groups. Results are assessed based on operation and passenger performance indicators and show that coordination is achieved. When combined with joint control in the common part, the proposed approach achieves consistentnetwork-wide travel time benefits. [less ▲]

Detailed reference viewed: 57 (4 UL)
Full Text
Peer Reviewed
See detailA global optimization heuristic for the decomposed static anticipatory network traffic control problem anticipatory network traffic control problem
Rinaldi, Marco UL; Tampére, Chris; Viti, Francesco UL

in Transportation Research Procedia (2017)

Developing traffic control strategies taking explicitly into account the route choice behavior of users has been widely recognized irregularities in the solution space shape, such as non-convexity and non ... [more ▼]

Developing traffic control strategies taking explicitly into account the route choice behavior of users has been widely recognized irregularities in the solution space shape, such as non-convexity and non-smoothness. In this work, we propose an extended as a very challenging problem. Furthermore, the inclusion of user behavior in optimization based control schemes introduces strong decomposition scheme for the anticipatory traffic control problem, based upon our previous contributions, which aims at i) reducing irregularities in the solution space shape, such as non-convexity and non-smoothness. In this work, we propose an extended the computational complexity of the problem by approaching it in a controller-by-controller fashion, and ii) internalizing specific decomposition scheme for the anticipatory traffic control problem, based upon our previous contributions, which aims at i) reducing constraints in the objective function, guiding the optimization process away from non-significant minima, such as flat regions. the computational complexity of the problem by approaching it in a controller-by-controller fashion, and ii) internalizing specific Through two small scale test networks and different, randomly chosen initial points, we compare how the proposed extension constraints in the objective function, guiding the optimization process away from non-significant minima, such as flat regions. influences optimization results with respect to our previously developed decomposed approach, as well as centralized schemes. Through two small scale test networks and different, randomly chosen initial points, we compare how the proposed extension influences optimization results with respect to our previously developed decomposed approach, as well as centralized schemes. [less ▲]

Detailed reference viewed: 23 (1 UL)
Full Text
Peer Reviewed
See detailOn characterizing the relationship between route choice behavior and optimal traffic control solution space
Rinaldi, Marco UL; Tampère, C. M. J.; Viti, Francesco UL

in Transportation Research Procedia (2017), 23

Explicitly including the dynamics of users' route choice behaviour in optimal traffic control applications has been of interest for researchers in the last five decades. This has been recognized as a very ... [more ▼]

Explicitly including the dynamics of users' route choice behaviour in optimal traffic control applications has been of interest for researchers in the last five decades. This has been recognized as a very challenging problem, due to the added layer of complexity and the considerable non-convexity of the resulting problem, even when dealing with simple static assignment and analytical link cost functions. In this work we establish a direct behavioural connection between the different shapes and structures emerging in the solution space of such problems and the underlying route choice behaviour. We specifically investigate how changes in the active equilibrium route set exert direct influence on the solution space's structure and behaviour. Based on this result, we then formulate and validate a constrained version of the original problem, yielding desirable properties in terms of solution space regularity. © 2017 The Authors. [less ▲]

Detailed reference viewed: 62 (2 UL)
Full Text
Peer Reviewed
See detailExact and approximate route set generation for resilient partial observability in sensor location problems
Rinaldi, Marco UL; Viti, Francesco UL

in Transportation Research. Part B : Methodological (2017), 105

Sensor positioning is a fundamental problem in transportation networks, as the location of sensors strongly determines how traffic flows are observable and hence manageable. This paper aims to develop a ... [more ▼]

Sensor positioning is a fundamental problem in transportation networks, as the location of sensors strongly determines how traffic flows are observable and hence manageable. This paper aims to develop a methodology to determine sensor locations on a network such that an optimal trade-off solution is found between the amount of sensors installed and the resilience of the sensor set. In particular, we propose exact and heuristic solutions for identifying the optimal route sets such that no other route would include any additional information for finding optimal full and partial observability solutions. This is an important contribution to sensor location problems, as route-based link flow inference problems have non-unique solutions, strongly depending on the used link-route information. The properties of the new methodology are analyzed and illustrated through different case studies, and the advantages of the algorithms are quantified both for full and for partial observability solutions. Due to the route sets found by our approach, we are able to find full observability solutions characterized by a small number of sensors, while yet being efficient also in terms of partial observability. We perform validation tests on both small and real-life sized network instances. © 2017 Elsevier Ltd [less ▲]

Detailed reference viewed: 82 (3 UL)
Full Text
Peer Reviewed
See detailExperimental analysis of eGLOSA and eGLODTA transit control strategies
Giorgione, Giulio UL; Viti, Francesco UL; Rinaldi, Marco UL et al

in Proceedings of the 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2017 (2017)

Battery powered electric buses have higher energy efficiency, lower emissions and noise when compared to buses with internal combustion engines. However, due to battery charging requirements, their large ... [more ▼]

Battery powered electric buses have higher energy efficiency, lower emissions and noise when compared to buses with internal combustion engines. However, due to battery charging requirements, their large-scale integration into public transport operations is more complex. This study proposes a novel concept supporting said integration via new control strategies, dubbed e-GLOSA and e-GLODTA. These strategies extend the existing Green Light Optimal Speed and Dwell Time Systems (GLOSA/GLODTA) to account for the specific needs of electric buses. That is, they include the goals of minimizing the energy consumption between charging stations, and maximizing available charging time. At the same time, interference with schedule requirements is minimized. The formulated heuristics are tested on a Bus Rapid Transit (BRT) corridor case study, where different scenarios—such as placement of charging stations and bus regularity—are studied to assess under which conditions each action (maintain speed, accelerate or dwell for a longer time at a stop) is beneficial. Results show that eGLOSA contributes to schedule adherence while eGLODTA allows satisfying charging time constraints. [less ▲]

Detailed reference viewed: 95 (22 UL)
Full Text
Peer Reviewed
See detailA local dynamic route and green time swapping control algorithm maximizing total network capacity
Viti, Francesco UL; Rinaldi, Marco UL

in Proceedings of the 25th Mediterranean Conference on Control and Automation, MED 2017 (2017)

This paper deals with the traffic signal control problem. More specifically it investigates the impact at a network level of simple dynamic local traffic control policies. A dynamic route swapping rule is ... [more ▼]

This paper deals with the traffic signal control problem. More specifically it investigates the impact at a network level of simple dynamic local traffic control policies. A dynamic route swapping rule is adopted to model the behavioral response of the travellers to signal changes, while a dynamic signal control swapping rule based on an equi-pressure policy is used to implicitly consider the flow response within the control updating process. Results on a simple network show that the flow responsive control policy outperforms pre-timed control, as well as a more conventional local control policy based on signal equi-saturation. Numerical results show also that the swapping rule based on equi-pressure is less susceptible to local optima, to systematically improve total network throughput, and to increase its effectiveness with when demand increases. © 2017 IEEE. [less ▲]

Detailed reference viewed: 54 (1 UL)