References of "Rees, Mark I"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailUltra-Rare Genetic Variation in the Epilepsies: A Whole-Exome Sequencing Study of 17,606 Individuals
Feng, Yen-Chen Anne; Howrigan, Daniel P.; Abbott, Liam E. et al

in American Journal of Human Genetics (2019)

Sequencing-based studies have identified novel risk genes associated with severe epilepsies and revealed an excess of rare deleterious variation in less-severe forms of epilepsy. To identify the shared ... [more ▼]

Sequencing-based studies have identified novel risk genes associated with severe epilepsies and revealed an excess of rare deleterious variation in less-severe forms of epilepsy. To identify the shared and distinct ultra-rare genetic risk factors for different types of epilepsies, we performed a whole-exome sequencing (WES) analysis of 9,170 epilepsy-affected individuals and 8,436 controls of European ancestry. We focused on three phenotypic groups: severe developmental and epileptic encephalopathies (DEEs), genetic generalized epilepsy (GGE), and non-acquired focal epilepsy (NAFE). We observed that compared to controls, individuals with any type of epilepsy carried an excess of ultra-rare, deleterious variants in constrained genes and in genes previously associated with epilepsy; we saw the strongest enrichment in individuals with DEEs and the least strong in individuals with NAFE. Moreover, we found that inhibitory GABAA receptor genes were enriched for missense variants across all three classes of epilepsy, whereas no enrichment was seen in excitatory receptor genes. The larger gene groups for the GABAergic pathway or cation channels also showed a significant mutational burden in DEEs and GGE. Although no single gene surpassed exome-wide significance among individuals with GGE or NAFE, highly constrained genes and genes encoding ion channels were among the lead associations; such genes included CACNA1G, EEF1A2, and GABRG2 for GGE and LGI1, TRIM3, and GABRG2 for NAFE. Our study, the largest epilepsy WES study to date, confirms a convergence in the genetics of severe and less-severe epilepsies associated with ultra-rare coding variation, and it highlights a ubiquitous role for GABAergic inhibition in epilepsy etiology. [less ▲]

Detailed reference viewed: 98 (6 UL)
Full Text
Peer Reviewed
See detailClinical spectrum of STX1B-related epileptic disorders
Wolking, Stefan; May, Patrick UL; Mei, Davide et al

in Neurology (2019), 92

Objective: The aim of this study was to expand the spectrum of epilepsy syndromes related to STX1B, encoding the presynaptic protein syntaxin-1B, and to establish genotype-phenotype correlations by ... [more ▼]

Objective: The aim of this study was to expand the spectrum of epilepsy syndromes related to STX1B, encoding the presynaptic protein syntaxin-1B, and to establish genotype-phenotype correlations by identifying further disease-related variants. Methods: We used next generation sequencing in the framework of research projects and diagnostic testing. Clinical data and EEGs were reviewed, including already published cases. To estimate the pathogenicity of the variants, we used established and newly developed in silico prediction tools. Results: We describe fifteen new variants in STX1B which are distributed across the whole gene. We discerned four different phenotypic groups across the newly identified and previously published patients (49 in 23 families): 1) Six sporadic patients or families (31 affected individuals) with febrile and afebrile seizures with a benign course, generally good drug response, normal development and without permanent neurological deficits; 2) two patients of genetic generalized epilepsy without febrile seizures and cognitive deficits; 3) thirteen patients or families with intractable seizures, developmental regression after seizure onset and additional neuropsychiatric symptoms; 4) two patients with focal epilepsy. Nonsense mutations were found more often in benign syndromes, whereas missense variants in the SNARE motif of syntaxin-1B were associated with more severe phenotypes. Conclusion: These data expand the genetic and phenotypic spectrum of STX1B-related epilepsies to a diverse range of epilepsies that span the ILAE classification. Variants in STX1B are protean, and able to contribute to many different epilepsy phenotypes, similar to SCN1A, the most important gene associated with fever-associated epilepsies. [less ▲]

Detailed reference viewed: 170 (1 UL)