References of "Querol, Jorge 50033359"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailNon-Coherent Massive MIMO Integration in Satellite Communication
Monzon Baeza, Victor UL; Ha, Vu Nguyen UL; Querol, Jorge UL et al

Scientific Conference (2022, October)

Massive Multiple Input-Multiple Output (mMIMO) technique has been considered an efficient standard to improve the transmission rate significantly for the following wireless communication systems, such as ... [more ▼]

Massive Multiple Input-Multiple Output (mMIMO) technique has been considered an efficient standard to improve the transmission rate significantly for the following wireless communication systems, such as 5G and beyond. However, implementing this technology has been facing a critical issue of acquiring much channel state information. Primarily, this problem becomes more criticising in the integrated satellite and terrestrial networks (3GPP-Release 15) due to the countable high transmission delay. To deal with this challenging problem, the mMIMO-empowered non-coherent technique can be a promising solution. To our best knowledge, this paper is the first work considering employing the non-coherent mMIMO in satellite communication systems. This work aims to analyse the challenges and opportunities emerging with this integration. Moreover, we identified the issues in this conjunction. The preliminary results presented in this work show that the performance measured in bit error rate (BER) and the number of antennas are not far from that required for terrestrial links. Furthermore, thanks to mMIMO in conjunction with the non-coherent approach, we can work in a low signal-to-noise ratio (SNR) regime, which is an excellent advantage for satellite links. [less ▲]

Detailed reference viewed: 20 (2 UL)
Full Text
Peer Reviewed
See detailMachine Learning for Radio Resource Management in Multibeam GEO Satellite Systems
Ortiz Gomez, Flor de Guadalupe UL; Lei, Lei UL; Lagunas, Eva UL et al

in Electronics (2022), 11(7), 992

Satellite communications (SatComs) systems are facing a massive increase in traffic demand. However, this increase is not uniform across the service area due to the uneven distribution of users and ... [more ▼]

Satellite communications (SatComs) systems are facing a massive increase in traffic demand. However, this increase is not uniform across the service area due to the uneven distribution of users and changes in traffic demand diurnal. This problem is addressed by using flexible payload architectures, which allow payload resources to be flexibly allocated to meet the traffic demand of each beam. While optimization-based radio resource management (RRM) has shown significant performance gains, its intense computational complexity limits its practical implementation in real systems. In this paper, we discuss the architecture, implementation and applications of Machine Learning (ML) for resource management in multibeam GEO satellite systems. We mainly focus on two systems, one with power, bandwidth, and/or beamwidth flexibility, and the second with time flexibility, i.e., beam hopping. We analyze and compare different ML techniques that have been proposed for these architectures, emphasizing the use of Supervised Learning (SL) and Reinforcement Learning (RL). To this end, we define whether training should be conducted online or offline based on the characteristics and requirements of each proposed ML technique and discuss the most appropriate system architecture and the advantages and disadvantages of each approach. [less ▲]

Detailed reference viewed: 69 (13 UL)
Full Text
See detailProceedings of the 12th European CubeSatSymposium
Thoemel, Jan UL; Querol, Jorge UL; Bokal, Zhanna UL et al

in Proceedings of the 12th European CubeSatSymposium (2021, November 15)

Detailed reference viewed: 86 (18 UL)
Full Text
Peer Reviewed
See detailA Cubesat-ready Phase Synchronization Digital Payload for Coherent Distributed Remote Sensing Missions
Querol, Jorge UL; Merlano Duncan, Juan Carlos UL; Martinez Marrero, Liz UL et al

Poster (2021, July 15)

Distributed antenna arrays, fractionated payloads and cooperative platforms can provide unprecedented performance in the next generation of spaceborne communications and remote sensing systems. Remote ... [more ▼]

Distributed antenna arrays, fractionated payloads and cooperative platforms can provide unprecedented performance in the next generation of spaceborne communications and remote sensing systems. Remote phase synchronization of physically separated oscillators is the first step towards a coherent operation of distributed systems. This work shows the preliminary results of a TDD remote phase synchronization algorithm with a master-follower architecture. Herein, we describe the implementation and validation of the proposed algorithm. The implementation has been conducted in a Cubesat-ready software defined radio and validated at the end-to-end satellite communications testbed available at the University of Luxembourg. [less ▲]

Detailed reference viewed: 91 (23 UL)
Full Text
Peer Reviewed
See detailRandom access procedure over non-terrestrial networks: From theory to practice
Kodheli, Oltjon UL; Abdalla, Abdelrahman UL; Querol, Jorge UL et al

in IEEE Access (2021)

Non-terrestrial Networks (NTNs) have become an appealing concept over the last few years and they are foreseen as a cornerstone for the next generations of mobile communication systems. Despite opening up ... [more ▼]

Non-terrestrial Networks (NTNs) have become an appealing concept over the last few years and they are foreseen as a cornerstone for the next generations of mobile communication systems. Despite opening up new market opportunities and use cases for the future, the novel impairments caused by the signal propagation over the NTN channel, compromises several procedures of the current cellular standards. One of the first and most important procedures impacted is the random access (RA) procedure, which is mainly utilized for achieving uplink synchronization among users in several standards, such as the fourth and fifth generation of mobile communication (4 & 5G) and narrowband internet of things (NB-IoT). In this work, we analyse the challenges imposed by the considerably increased delay in the communication link on the RA procedure and propose new solutions to overcome those challenges. A trade-off analysis of various solutions is provided taking into account also the already existing ones in the literature. In order to broaden the scope of applicability, we keep the analysis general targeting 4G, 5G and NB-IoT systems since the RA procedure is quasi-identical among these technologies. Last but not least, we go one step further and validate our techniques in an experimental setup, consisting of a user and a base station implemented in open air interface (OAI), and an NTN channel implemented in hardware that emulates the signal propagation delay. The laboratory test-bed built in this work, not only enables us to validate various solutions, but also plays a crucial role in identifying novel challenges not previously treated in the literature. Finally, an important key performance indicator (KPI) of the RA procedure over NTN is shown, which is the time that a single user requires to establish a connection with the base station. [less ▲]

Detailed reference viewed: 75 (12 UL)
Full Text
Peer Reviewed
See detailA design strategy for phase synchronization in Precoding-enabled DVB-S2X user terminals
Martinez Marrero, Liz UL; Merlano Duncan, Juan Carlos UL; Querol, Jorge UL et al

Scientific Conference (2021, June)

This paper address the design of a phase tracking block for the DVB-S2X user terminals in a satellite precoding system. The spectral characteristics of the phase noise introduced by the oscillator, the ... [more ▼]

This paper address the design of a phase tracking block for the DVB-S2X user terminals in a satellite precoding system. The spectral characteristics of the phase noise introduced by the oscillator, the channel, and the thermal noise at the receiver are taken into account. Using the expected phase noise mask, the optimal parameters for a second-order PLL intended to track channel variations from the pilots are calculated. To validate the results a Simulink model was implemented considering the characteristics of the hardware prototype. The performance of the design was evaluated in terms of the accuracy and stability for the frame structure of superframe Format 2, as described in Annex E of DVB-S2X. [less ▲]

Detailed reference viewed: 133 (21 UL)
Full Text
Peer Reviewed
See detail5G-SpaceLab
Querol, Jorge UL; Abdalla, Abdelrahman UL; Bokal, Zhanna UL et al

Poster (2021, April 19)

The new phase of space exploration involves a growing number of human and robotic missions with varying communication and service requirements. Continuous, maximum coverage of areas where activities are ... [more ▼]

The new phase of space exploration involves a growing number of human and robotic missions with varying communication and service requirements. Continuous, maximum coverage of areas where activities are concentrated and orbiting missions (single spacecraft or constellations) around the Earth, Moon or Mars will be particularly challenging. The standardization of the 5G Non-Terrestrial Networks (NTN) has already begun [1], and nothing prevents 5G from becoming a common communications standard supporting space resource missions [2]. The 5G Space Communications Lab (5G-SpaceLab) is an interdisciplinary experimental platform, funded by the Luxembourg Space Agency and is part of the Space Research Program of SnT. The lab allows users to design and emulate realistic space communications and control scenarios for the next-generation of space applications. The capabilities of the 5G-SpaceLab testbed combine the experience of different disciplines including space communications, space and satellite mission design, and space robotics. The most relevant include the demonstration of SDR 5G NTN terminals including NB-IoT, emulation of space communications channel scenarios (e.g. link budget, delay, Doppler…), small satellite platform and payload design and testing, satellite swarm flight formation, lunar rover and robotic arm control and AI-powered telerobotics. Earth-Moon communications is one of the scenarios demonstrated in the 5G-SpaceLab. Bidirectional communication for the teleoperation of lunar rovers for near real-time operations including data collection and sensors feedback will be tested. AI-based approaches for perception and control will be developed to overcome communication delays and to provide safer, trustworthy, and efficient remote control of the rovers. [1] 3GPP Release 17 Timeline. [Online]. Available: https://www.3gpp.org/release-17 [2] Nokia, Nokia selected by NASA to build first ever cellular network on the Moon. [Online]. Available: https://www.nokia.com/about-us/news/releases/2020/10/19/nokia-selected-by-nasa-to-build-first-ever-cellular-network-on-the-moon/ [less ▲]

Detailed reference viewed: 422 (50 UL)
Full Text
Peer Reviewed
See detailEnd-to-end Precoding Validation over a Live GEO Satellite Forward Link
Krivochiza, Jevgenij UL; Merlano Duncan, Juan Carlos UL; Querol, Jorge UL et al

in IEEE Access (2021)

In this paper we demonstrate end-to-end precoded multi-user multiple-input singleoutput (MU-MISO) communications over a live GEO satellite link. Precoded communications enable full frequency reuse (FFR ... [more ▼]

In this paper we demonstrate end-to-end precoded multi-user multiple-input singleoutput (MU-MISO) communications over a live GEO satellite link. Precoded communications enable full frequency reuse (FFR) schemes in satellite communications (SATCOM) to achieve broader service availability and higher spectrum efficiency than with the conventional four-color (4CR) and twocolor (2CR) reuse approaches. In this scope, we develop an over-the-air test-bed for end-to-end precoding validations.We use an actual multi-beam satellite to transmit and receive precoded signals using the DVB-S2X standard based gateway and user terminals. The developed system is capable of end-to-end real-time communications over the satellite link including channel measurements and precompensation. It is shown, that by successfully canceling inter-user interference in the actual satellite FFR link precoding brings gains in terms of enhanced SINR and increased system goodput. [less ▲]

Detailed reference viewed: 109 (17 UL)
Full Text
Peer Reviewed
See detailSatellite Communications in the New Space Era: A Survey and Future Challenges
Kodheli, Oltjon UL; Lagunas, Eva UL; Maturo, Nicola UL et al

in IEEE Communications Surveys and Tutorials (2021), 23(1), 70-109

Satellite communications (SatComs) have recently entered a period of renewed interest motivated by technological advances and nurtured through private investment and ventures. The present survey aims at ... [more ▼]

Satellite communications (SatComs) have recently entered a period of renewed interest motivated by technological advances and nurtured through private investment and ventures. The present survey aims at capturing the state of the art in SatComs, while highlighting the most promising open research topics. Firstly, the main innovation drivers are motivated, such as new constellation types, on-board processing capabilities, nonterrestrial networks and space-based data collection/processing. Secondly, the most promising applications are described i.e. 5G integration, space communications, Earth observation, aeronautical and maritime tracking and communication. Subsequently, an in-depth literature review is provided across five axes: i) system aspects, ii) air interface, iii) medium access, iv) networking, v) testbeds & prototyping. Finally, a number of future challenges and the respective open research topics are described. [less ▲]

Detailed reference viewed: 213 (38 UL)
Full Text
Peer Reviewed
See detailSystem Modelling and Design Aspects of Next Generation High Throughput Satellites
Sharma, Shree Krishna UL; Querol, Jorge UL; Maturo, Nicola UL et al

in IEEE Communications Letters (2021), 69

As compared to terrestrial systems, the design of Satellite Communication (SatCom) systems require a different approach due to differences in terms of wave propagation, operating frequency, antenna ... [more ▼]

As compared to terrestrial systems, the design of Satellite Communication (SatCom) systems require a different approach due to differences in terms of wave propagation, operating frequency, antenna structures, interfering sources, limitations of onboard processing, power limitations and transceiver impairments. In this regard, this letter aims to identify and discuss important modeling and design aspects of the next generation High Throughput Satellite (HTS) systems. First, communication models of HTSs including the ones for multibeam and multicarrier satellites, multiple antenna techniques, and for SatCom payloads and antennas are highlighted and discussed. Subsequently, various design aspects of SatCom transceivers including impairments related to the transceiver, payload and channel, and traffic-based coverage adaptation are presented. Finally, some open topics for the design of next generation HTSs are identified and discussed. [less ▲]

Detailed reference viewed: 117 (12 UL)
Full Text
Peer Reviewed
See detailA Remote Carrier Synchronization Technique for Coherent Distributed Remote Sensing Systems
Merlano Duncan, Juan Carlos UL; Martinez Marrero, Liz UL; Querol, Jorge UL et al

in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (2021), 14

Phase, frequency, and time synchronization are crucial requirements for many applications, such as multi-static remote sensing and communication systems. Moreover, the synchronization solution becomes ... [more ▼]

Phase, frequency, and time synchronization are crucial requirements for many applications, such as multi-static remote sensing and communication systems. Moreover, the synchronization solution becomes even more challenging when the nodes are orbiting or flying on airborne or spaceborne platforms. This paper compares the available technologies used for the synchronization and coordination of nodes in distributed remote sensing applications. Additionally, this paper proposes a general system model and identifies preliminary guidelines and critical elements for implementing the synchronization mechanisms exploiting the inter-satellite communication link. The distributed phase synchronization loop introduced in this work deals with the self-interference in a full-duplex point to point scenario by transmitting two carriers at each node. All carriers appear with different frequency offsets around a central frequency, called the application central-frequency or the beamforming frequency. This work includes a detailed analysis of the proposed algorithm and the required simulations to verify its performance for different phase noise, AWGN, and Doppler shift scenarios. [less ▲]

Detailed reference viewed: 112 (22 UL)
Full Text
Peer Reviewed
See detailCentralized Gateway Concept for Precoded Multi-beam GEO Satellite Networks
Kisseleff, Steven UL; Lagunas, Eva UL; Krivochiza, Jevgenij et al

in VTC2021-Fall Workshop on Evolution of Non-Terrestrial Networks Toward 6G, Sept. 2021 (2021)

Detailed reference viewed: 92 (28 UL)
Full Text
Peer Reviewed
See detailSDR IMPLEMENTATION OF A TESTBED FOR SYNCHRONIZATION OF COHERENT DISTRIBUTED REMOTE SENSING SYSTEMS
Merlano Duncan, Juan Carlos UL; Querol, Jorge UL; Martinez Marrero, Liz UL et al

in Proceedings of IEEE International Geoscience and Remote Sensing Symposium 2020 (2020, September 26)

Remote Sensing from distributed platforms has become attractive for the community in the last years. Phase, frequency, and time synchronization are a crucial requirement for many such applications as ... [more ▼]

Remote Sensing from distributed platforms has become attractive for the community in the last years. Phase, frequency, and time synchronization are a crucial requirement for many such applications as multi-static remote sensing and also for distributed beamforming for communications. The literature on the field is extensive, and in some cases, the requirements an complexity of the proposed synchronization solution may surpass the ones set by the application itself. Moreover, the synchronization solution becomes even more challenging when the nodes are flying or hovering on aerial or space platforms. In this work, we discuss the synchronization considerations for the implementation of distributed remote sensing applications. The general framework considered is based on a distributed collection of autonomous nodes that synchronize their clocks with a common reference using inter-satellite links. For this purpose, we implement a synchronization link between two nodes operating in a full-duplex fashion. The experimental testbed uses commercially available SDR platforms to emulate two satellites, two targets, and the communication channel. The proposal is evaluated considering phase and frequency errors for different system parameters. [less ▲]

Detailed reference viewed: 82 (15 UL)
Full Text
Peer Reviewed
See detailEFFECTS OF MULTIPLE OSCILLATOR PHASE NOISE IN PRECODING PERFORMANCE
Martinez Marrero, Liz UL; Merlano Duncan, Juan Carlos UL; Querol, Jorge UL et al

Scientific Conference (2019, October)

Satellite Precoding is a promising technique to meet the target data rates of the future high throughput satellite systems and the costs per bit as required by 5G applications and networks, but it ... [more ▼]

Satellite Precoding is a promising technique to meet the target data rates of the future high throughput satellite systems and the costs per bit as required by 5G applications and networks, but it requires strict synchronization among the transmitted waveforms, in addition to accurate channel state information. Most of the published work about this topic consider ideal oscillators, but in practice, the output of an oscillator is not a single spectral line at the nominal frequency. This paper proposes a model for the oscillator phase noise and analyzes the resulting received signal to interference plus noise ratio (SNIR) in a satellite communication system using Precoding. Simulations of a communication satellite system with a two-beam transponder and two receivers were performed to compute the effective SNIR. This work uses a simulator which also considers practical impairments such as time misalignment, errors in the channel state information, interference, thermal noise and phase noise masks for satellite oscillators. The Precoding methods used for the analysis are Zero Forcing (ZF) and Minimum Mean Square Error (MMSE). The obtained results prove that there is a degradation in the performance due to the use of independent oscillators but this effect is compensated by the precoding matrix. [less ▲]

Detailed reference viewed: 294 (57 UL)