References of "Pourjamal, Sara"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailTunable magnetoplasmonics in lattices of Ni/SiO2/Au dimers
Pourjamal, Sara; Kataja, Mikko; Maccaferri, Nicolò UL et al

in Scientific Reports (2019), 9

We present a systematic study on the optical and magneto-optical properties of Ni/SiO2/Au dimer lattices. By consideringthe excitation of orthogonal dipoles in the Ni and Au nanodisks, we analytically ... [more ▼]

We present a systematic study on the optical and magneto-optical properties of Ni/SiO2/Au dimer lattices. By consideringthe excitation of orthogonal dipoles in the Ni and Au nanodisks, we analytically demonstrate that the magnetoplasmonicresponse of dimer lattices is governed by a complex interplay of near- and far-field interactions. Near-field coupling betweendipoles in Ni and low-loss Au enhances the polarizabilty of single dimers compared to that of isolated Ni nanodisks. Far-fielddiffractive coupling in periodic lattices of these two particle types enlarges the difference in effective polarizability further.This effect is explained by an inverse relationship between the damping of collective surface lattice resonances and theimaginary polarizability of individual scatterers. Optical reflectance measurements, magneto-optical Kerr effect spectra, andfinite-difference time-domain simulations confirm the analytical results. Hybrid dimer arrays supporting intense plasmonexcitations are a promising candidate for active magnetoplasmonic devices. [less ▲]

Detailed reference viewed: 61 (1 UL)
Full Text
Peer Reviewed
See detailHybrid Ni/SiO2/Au dimer arrays for high-resolution refractive index sensing
Pourjamal, Sara; Kataja, Mikko; Maccaferri, Nicolò UL et al

in Nanophotonics (2018), 7(5), 905-912

We introduce a novel magnetoplasmonic sensor concept for sensitive detection of refractive index changes. The sensor consists of a periodic array of Ni/SiO2/Au direr nanodisks. Combined effects of near ... [more ▼]

We introduce a novel magnetoplasmonic sensor concept for sensitive detection of refractive index changes. The sensor consists of a periodic array of Ni/SiO2/Au direr nanodisks. Combined effects of near-field interactions between the Ni and Au disks within the individual dimers and far-field diffractive coupling between the dimers of the array produce narrow linewidth features in the magneto-optical Faraday spectrum. We associate these features with the excitation of surface lattice resonances and show that they exhibit a spectral shift when the refractive index of the surrounding environment is varied. Because the resonances are sharp, refractive index changes are accurately detected by tracking the wavelength where the Faraday signal crosses 0. Compared to random distributions of pure Ni nanodisks or Ni/SiO2/Au dimers or periodic arrays of Ni nanodisks, the sensing figure of merit of the hybrid magnetoplasmonic array is more than one order of magnitude larger. [less ▲]

Detailed reference viewed: 60 (2 UL)
Full Text
Peer Reviewed
See detailHybrid plasmonic lattices with tunable magneto-optical activity
Kataja, Mikko; Pourjamal, Sara; Maccaferri, Nicolò UL et al

in Optics Express (2016), 24(4), 3652-3662

We report on the optical and magneto-optical response of hybrid plasmonic lattices that consist of pure nickel and gold nanoparticles in a checkerboard arrangement. Diffractive far-field coupling between ... [more ▼]

We report on the optical and magneto-optical response of hybrid plasmonic lattices that consist of pure nickel and gold nanoparticles in a checkerboard arrangement. Diffractive far-field coupling between the individual emitters of the lattices results in the excitation of two orthogonal surface lattice resonance modes. Local analyses of the radiation fields indicate that both the nickel and gold nanoparticles contribute to these collective resonances and, thereby, to the magneto-optical activity of the hybrid arrays. The strong effect of noble metal nanoparticles on the magneto-optical response of hybrid lattices opens up new avenues for the realization of sensitive and tunable magneto-plasmonic nanostructures. [less ▲]

Detailed reference viewed: 68 (2 UL)