References of "Plapper, Peter 50002870"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailValue Stream Mapping (VSM) to Evaluate and Visualize Interrelated Process-Chains Regarding Circular Economy
Mangers, Jeff UL; Minoufekr, Meysam UL; Plapper, Peter UL

in Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems (2021, August 31), 633

The concept of circular economy (CE) aims to close and slow resource loops without neglecting the goals of sustainable development. Recently, the concept received encouraging attention among researchers ... [more ▼]

The concept of circular economy (CE) aims to close and slow resource loops without neglecting the goals of sustainable development. Recently, the concept received encouraging attention among researchers and business experts to be a convenient solution to move away from the finite linear economy concept to a more sustainable solution. However, this change of paradigm is only possible if we consider systems in a holistic manner and can localize the preventing hurdles. Value stream mapping (VSM) is a commonly known lean method, used to develop current state visualization of product and information flows within organization, helping to seek weaknesses and improve process flows. The motivation of this paper is a new C-VSM model, which enables its users to evaluate and visualize connected process-chains regarding CE on different levels in a holistic manner. For this purpose, the traditional VSM model was adapted towards the needs and requirements of CE through the application of a new representation method, additional indicators, and an appropriated evaluation system. C-VSM is in line with the current political and industrial objectives to apply CE principles by enabling a holistic reflection and consideration of supply-chains (SCs) on different levels. The model itself is validated through an extensive cross-company case study. [less ▲]

Detailed reference viewed: 23 (6 UL)
Full Text
Peer Reviewed
See detailFailure mechanism analysis based on laser-based surface treatments for aluminum-polyamide laser joining
Amne Elahi, Mahdi UL; Koch, Marcus; Bardon, Julien et al

in Journal of Materials Processing Technology (2021), 298

The development of strong metal to polymer assemblies is currently an important research subject thanks to its prominence to develop lightweight structures. Furthermore, laser welding is known to be a ... [more ▼]

The development of strong metal to polymer assemblies is currently an important research subject thanks to its prominence to develop lightweight structures. Furthermore, laser welding is known to be a fast, reliable, and versatile joining process, and it was demonstrated recently that it can be applied to such metal to polymer systems. To enhance the mechanical properties of the laser-joined aluminum-polyamide (Al-PA) specimens, laser polishing and laser ablation processes have been implemented on the aluminum surface before joining. The polyamide surface was also treated with the laser beam, separately. The surfaces were tested by several characterization techniques before and after each surface treatment. Then aluminum and polyamide samples with different surface treatments have been joined with an identical laser joining process. The mechanical properties of the joints in single lap shear configuration are reported and the failure mechanisms are discussed based on micro-computed x-ray tomography imaging of joined specimens and microscopic analysis before failure. Results show that both surface treatments of aluminum significantly improve the shear load of the joint; however, with different failure mechanisms. Polyamide surface treatment and increasing degree of crystallinity are effective when combined with the laser polishing of the Al surface. This combination is responsible for further enhancement of the shear load of the joint to the limit of base metal strength which is approximately 60 % improvement compared to the untreated samples. Finally, energy dispersive X-ray mapping shows the physicochemical bonding between aluminum oxide and polyamide at the interface. [less ▲]

Detailed reference viewed: 22 (2 UL)
Full Text
Peer Reviewed
See detailAn Innovative Strategy Allowing a Holisitic System Change towards Circular Economy within Supply-Chains
Mangers, Jeff UL; Minoufekr, Meysam UL; Plapper, Peter UL et al

in Energies (2021), 14(14),

: The concept of the circular economy (CE) is receiving encouraging attention among scholars and practitioners, as a convenient solution to move away from the linear economy concept without neglecting the ... [more ▼]

: The concept of the circular economy (CE) is receiving encouraging attention among scholars and practitioners, as a convenient solution to move away from the linear economy concept without neglecting the goals of sustainable development. The main goals of the CE are the closing of resource loops and the keeping of resources in the system for as long as possible at the highest utility level. However, as a result of the lack of internationally accepted definitions of the CE and several unsolved barriers, an excessive and inconsistent number of different CE applications exist. Most fields are mainly focusing on making a linear system circular instead of applying the CE principles in a holistic way. This paper presents a strategy to close the mentioned inconsistency gap, by contrasting currently discussed CE barriers and goals and thereof deriving two areas with a need for action (1. identifying the needed collection, sorting, and recovery infrastructure, and 2. developing circular product design guidelines). The strategy itself consists of connecting these two areas through an improved information exchange between the end-of-life (EOL) and beginning-of-life (BOL) of products. The result is CE design guidelines which are in accordance with the available or needed collection, sorting, and recovery infrastructure. The proposed strategy presents an innovative solution to apply CE principles in a holistic manner, based on EOL-driven product design. [less ▲]

Detailed reference viewed: 76 (3 UL)
Full Text
Peer Reviewed
See detailComparing effectiveness of paper based and Augmented Reality instructions for manual assembly and training tasks
Kolla, Sri Sudha Vijay Keshav UL; Sanchez, Andre UL; Plapper, Peter UL

in Proceedings of the 11th Conference on Learning Factories (2021, June 24)

Augmented Reality (AR) systems have seen a rapid adaptation in both training and in virtual assembly instructions. AR systems assist the operator by enhancing user perception of reality, reducing the ... [more ▼]

Augmented Reality (AR) systems have seen a rapid adaptation in both training and in virtual assembly instructions. AR systems assist the operator by enhancing user perception of reality, reducing the defects, and lead-time. However, there is a significant lack in the existing literature to compare AR systems and conventional work instructions. The aim of this research is to provide an empirical evidence of comparing task completion time, number of errors, workload index and system usability of AR and conventional paper-based work instructions. For this purpose, we designed an experiment where participants use paper based instructions and AR instructions to assemble a planetary gearbox. The task was assessed using NASA-TLX and System Usability Scale (SUS) tests, which allowed further analysis using descriptive statistics. Moreover, the qualitative interview at the end of the experiment gave more insights about participant’s overall experience. [less ▲]

Detailed reference viewed: 97 (5 UL)
Full Text
See detailThe effect of temperature and joining speed on the joining quality for conduction laser joining of metals to polymers
Amne Elahi, Mahdi UL; Hennico, Max; Plapper, Peter UL

Scientific Conference (2021, June 24)

Laser joining of metals to polymers offers several advantages to produce lightweight hybrid assemblies. An important one is the exceptional control over the heat input which defines the temperature at the ... [more ▼]

Laser joining of metals to polymers offers several advantages to produce lightweight hybrid assemblies. An important one is the exceptional control over the heat input which defines the temperature at the interface of the materials. Initially, the in-situ heating observation of PA inside ESEM is considered. Then, aluminum and polyamide are joined in an overlap configuration while the temperature was recorded simultaneously at different areas between the materials. The results show that due to excessive heat input, polyamide degrades and leaves bubbles in the melted area. Finally, the materials are laser joined with several joining speeds to investigate different cooling rates of the polyamide during the joining process. It is concluded that joining with high cooling rates generates an amorphous melted layer of the polyamide which is different from the semi-crystalline structure of the bulk. This difference acts as a stress concentration zone and reduces the shear strength of the assembly. [less ▲]

Detailed reference viewed: 43 (1 UL)
Full Text
See detailPrediction of Cu-Al weld status using convolutional neural network
Mathivanan, Karthik UL; Plapper, Peter UL

Scientific Conference (2021, June 21)

Welding copper (Cu) and aluminum (Al) result in brittle intermetallic (IMC) phases, which reduces the joint performance. The key for a strong joint is to maintain an optimum amount of Al and Cu ... [more ▼]

Welding copper (Cu) and aluminum (Al) result in brittle intermetallic (IMC) phases, which reduces the joint performance. The key for a strong joint is to maintain an optimum amount of Al and Cu composition in the joint. To implement this without the destruction of the sample is a challenge. For this purpose, high-resolution images of the weld zone are utilized after welding. With the image processing technique, the presence of (Al/Cu) material melted is distinguished. Therefore, the different weld type/status like insufficient melt, optimum melt, and excessive melt is detected from the images. This paper analyses the weld images and applies the convolutional neural network technique to predict the weld type. The microstructure and Energy Dispersive X-ray Spectroscopy (EDS) analysis of the fusion zone for each weld type are correlated to the weld images. [less ▲]

Detailed reference viewed: 47 (2 UL)
Full Text
Peer Reviewed
See detailCorrelation of Optical Signal During Laser Fusion Welding of Copper to Aluminum
Mathivanan, Karthik UL; Plapper, Peter UL

in Journal of Laser Applications (2021, January 05), 33(1),

Laser joining of dissimilar metals, copper and aluminum, allows for the precise delivery of laser energy and high process speed. The keyhole-based process is very efficient for welding Al–Cu, considering ... [more ▼]

Laser joining of dissimilar metals, copper and aluminum, allows for the precise delivery of laser energy and high process speed. The keyhole-based process is very efficient for welding Al–Cu, considering the high reflectivity and thermal conductivity of the materials joined. For the Al–Cu system, the formation of detrimental intermetallic compounds is the main issue. Fusion welding with laser as a heat source involves the melting of metals. However, the high speed of the laser welding process is advantageous for terminating the excessive melting of Al and Cu and eventually controlling the detrimental intermetallic phases. Therefore, information pertaining to melted material is an important criterion for achieving joint strength. In this paper, the photodiode signal measured during the laser welding of Cu to Al is investigated as a process monitoring technique. In welding from Cu to Al, the melting of Al (bottom sheet) is very critical for joint strength. The amount of Al material that can be intermixed in Cu depends on the solubility limit of the Al–Cu system. The plasma plume emission during laser welding is used to extract the rapid melting of Al. This study shows the correlation of the Al characteristic peak at a wavelength of 396 nm with the shear strength of the joint. [less ▲]

Detailed reference viewed: 60 (9 UL)
Full Text
Peer Reviewed
See detailEVALUATION OF THE JOINT BASED ON DIFFERENT SURFACE CONDITIONS FOR ALUMINUM-POLYAMIDE LASER WELDING
Amne Elahi, Mahdi UL; Koch, Marcus; Plapper, Peter UL

in Journal of Laser Applications (2021)

Laser welding is one of the most promising joining techniques to realize hybrid joints between metals and polymers in order to achieve weight reduction and functionalization of the parts. The surface ... [more ▼]

Laser welding is one of the most promising joining techniques to realize hybrid joints between metals and polymers in order to achieve weight reduction and functionalization of the parts. The surface treatment of the metal has a decisive effect on the joint quality and thus on the mechanical properties. In the present study, different mechanical and laser-based surface treatments have been investigated to develop diverse surface conditions on aluminum. Abrasive blasting and laser ablation were used to increase the surface roughness, while abrasive polishing and laser polishing were applied to minimize the surface roughness. In contrast to abrasive surface treatments, laser-based ones were implemented to create artificial oxide layers on the aluminum surface. The surface structures of pretreated samples have been studied with scanning electron microscopy and roughness test. The laser welding of pretreated aluminum with polyamide was achieved with the heat conduction joining technique. To enlarge the welding area and control the heat input, spatial and temporal modulations of the laser beam were implemented. Finally, a single lap tensile-shear test, microscopic analysis of fractured surfaces, and welding cross sections were employed to evaluate the joints. Results show that the presence of an artificial aluminum oxide layer and low roughness are essential to achieve a superior joint between aluminum and polyamide (improvement of approximately 58% in the shear load of the joint compared to as-received welded samples). The cross section of the superior joint which is the laser-polished aluminum welded to polyamide is studied with transmission electron microscopy. [less ▲]

Detailed reference viewed: 110 (2 UL)
Full Text
Peer Reviewed
See detailHolo Study – Mixed Reality Framework for Industrial Engineering Education and Training
Minoufekr, Meysam UL; Plapper, Peter UL

in Trends in Technical & Scientific Research (2020), 4(5), 0131-0135

Nowadays, students struggle with understanding complex production processes and kinematics of machine tools and robots. While professors mostly have been dealing with these subjects for many years ... [more ▼]

Nowadays, students struggle with understanding complex production processes and kinematics of machine tools and robots. While professors mostly have been dealing with these subjects for many years, students have only short time to be introduced to the complex nature of these topics. Mixed Reality allows students to engage hands-on in their subjects to reach new dimensions of understanding. Making challenging topics for students accessible by creating a more visual and tactile experience. The applications for entertainment and gaming are off the charts, but the implications for augmented reality in education and science are also undoubtedly massive. The project focusses on making education as interactive as possible, which helps both, teachers and students receive a unique tool for communicating phenomena and processes that are difficult to describe verbally. As a result, a complex knowledge becomes simple, an involvement of students grows, the quality of education increases [less ▲]

Detailed reference viewed: 96 (3 UL)
Full Text
Peer Reviewed
See detailA Survey of Information Entropy Metrics for Complex Networks
Omar, Yamila UL; Plapper, Peter UL

in Entropy (2020)

Information entropy metrics have been applied to a wide range of problems that were abstracted as complex networks. This growing body of research is scattered in multiple disciplines, which makes it ... [more ▼]

Information entropy metrics have been applied to a wide range of problems that were abstracted as complex networks. This growing body of research is scattered in multiple disciplines, which makes it difficult to identify available metrics and understand the context in which they are applicable. In this work, a narrative literature review of information entropy metrics for complex networks is conducted following the PRISMA guidelines. Existing entropy metrics are classified according to three different criteria: whether the metric provides a property of the graph or a graph component (such as the nodes), the chosen probability distribution, and the types of complex networks to which the metrics are applicable. Consequently, this work identifies the areas in need for further development aiming to guide future research efforts. [less ▲]

Detailed reference viewed: 47 (5 UL)
Full Text
See detailWELDING COPPER TO ALUMINIUM WITH GREEN LASER WAVELENGTH OF 515 NM
Mathivanan, Karthik UL; Plapper, Peter UL

Scientific Conference (2020, October 19)

Joining copper and aluminum sheets is difficult because of brittle intermetallic phases (IMP) formed in the joint, which results in reduced performance. The traditional approach to overcome this issue is ... [more ▼]

Joining copper and aluminum sheets is difficult because of brittle intermetallic phases (IMP) formed in the joint, which results in reduced performance. The traditional approach to overcome this issue is to irradiate the laser beam from Aluminum (Al) to control the weld depth and mixing of Cu in Al. The laser welding approach from the copper side (Cu on top) to Al is very sparse in the literature. In this paper, the welding approach from copper (top sheet) to aluminum is studied with green laser (515 nm) due to improved absorption at this wavelength. The objective of irradiating the laser beam from the copper side (Cu on top) is to exploit the higher solubility of Al in Cu (about 18%), which is significantly higher than Cu in Al. Therefore more Cu and Al can be melted and mixed in the joint for copper sheet placed on the top. From the tensile shear test, a strong joint is obtained with a fracture on the heat-affected zone (HAZ) of Al. Detailed microstructure and composition of Al and Cu in the joint is performed by Energy-dispersive X-ray spectroscopy (EDS) to investigate the composition in the joint. The EDS analysis indicates that a large amount of beneficial Cu solid solution and Al-rich phases is formed in the joint. The detrimental phases are intermixed in between the ductile phase composition i.e Al-rich and Cu solid solution. Therefore the effect of detrimental intermetallic phases is mitigated by intermixing with large ductile phases. With this paper, the fusion welding approach for joining Cu and Al system with a significant level of Cu and Al melting is shown. [less ▲]

Detailed reference viewed: 92 (20 UL)
Full Text
Peer Reviewed
See detailMULTI-LEVEL INFORMATION VALUE STREAM MAPPING
Mangers, Jeff UL; Thoussaint, Lou; Minoufekr, Meysam UL et al

in Proceedings of the 9th International Conference on Mass Customization and Personalization - Community of Europe (MCP-CE 2020) (2020, September 25)

Digitalization and automation of the production according to Industry 4.0 opens new opportunities for companies to develop more efficient value chains. In the context of mass customization, it is ... [more ▼]

Digitalization and automation of the production according to Industry 4.0 opens new opportunities for companies to develop more efficient value chains. In the context of mass customization, it is promising to examine more closely the complete internal value chain of companies, from the first customer contact to the delivery of the finished product, prior to provide digital configurations for customized products. A critical aspect for internal inefficiencies and complication of an aspired automation are the interfaces of departments due to inconsistent and non-uniform information transfer. This article presents a versatile approach to visualize the internal information flow at inter-departmental level as well as at intra-departmental level. The described multilevel information value stream mapping method perfectly suits as prerequisite for a digitalization or automation of internal information flows. As framework for the time capturing and visualization, ISO 22468 is used, and an industrial use case exemplifies the research findings. [less ▲]

Detailed reference viewed: 118 (10 UL)
Full Text
Peer Reviewed
See detailAugmented Reality in Manual Assembly Processes
Kolla, Sri Sudha Vijay Keshav UL; Sanchez, Andre UL; Minoufekr, Meysam UL et al

in Kolla, Sri Sudha Vijay Keshav; Sanchez, Andre; Minoufekr, Meysam (Eds.) et al Augmented Reality in Manual Assembly Processes (2020, September 23)

Augmented Reality (AR) is a novel technology that projects virtual information on the real world environment. With the increased use of Industry 4.0 technologies in manufacturing, AR has gained momentum ... [more ▼]

Augmented Reality (AR) is a novel technology that projects virtual information on the real world environment. With the increased use of Industry 4.0 technologies in manufacturing, AR has gained momentum across various stages of product life cycle. AR can benefit production operators in many manufacturing tasks such as quality inspection, work instructions for manual assembly, maintenance, and in training. This research presents not only a typical architecture of an AR system but also both its software and hardware functions. The architecture is then applied to display virtual assembly instructions in the form of 3D animations on to the real world environment. The chosen assembly task in this research is to assemble a planetary gearbox system. The assembly instructions are displayed on a mobile device targeting a static tracker placed in the assembly environment. [less ▲]

Detailed reference viewed: 65 (6 UL)
Full Text
Peer Reviewed
See detailPre and post-treatments to improve weldability and mechanical properties of Aluminum-Polyamide laser welded specimens
Amne Elahi, Mahdi UL; Koch, Marcus; Heck, Mike et al

in Procedia CIRP (2020), 94

The laser polishing surface treatment is a prerequisite for enhanced weldability that is enabled by superior adhesion between the weldments. The paper describes the laser polishing process of the aluminum ... [more ▼]

The laser polishing surface treatment is a prerequisite for enhanced weldability that is enabled by superior adhesion between the weldments. The paper describes the laser polishing process of the aluminum surface to develop a relatively thick and porous artificial aluminum oxide layer. Microscopic observation shows the laser polishing process significantly improves the adhesion of molten polyamide to the aluminum surface. Besides, the shear load of the pretreated joints is much higher than that of as-received ones. However, for the majority of the welded samples, the failure happens at the polyamide near the interface of aluminum/polyamide due to the thermal effect and structural changes of polyamide during the welding process. By applying the post-treatment of the welded specimens with different cycles, the mentioned failure mechanism is not observed anymore. Therefore, the mechanical properties of the joint will be improved and reach to the limits of the base materials. [less ▲]

Detailed reference viewed: 108 (1 UL)
Full Text
Peer Reviewed
See detailDigitizing of Research and Teaching
Plapper, Peter UL

Scientific Conference (2020, September 05)

The current Covid-19 crisis impacts all manufacturing areas and new processes are sought. This presentation provides the audience with three examples related to assembly work instructions, logistics data ... [more ▼]

The current Covid-19 crisis impacts all manufacturing areas and new processes are sought. This presentation provides the audience with three examples related to assembly work instructions, logistics data handling and manufacturing education, for which innovative ways to obtain access to context sensitive data based on digital tools are investigated. Augmented Reality (AR) and Virtual Reality (VR) facilitate access to relevant manufacturing information. In order to provide logistic warehouse workers with immediate access to shipping documents, to avoid paper print-outs, and to eliminate error-prone typing of information, critical information should be handled digitally and hands-free. To support logistic workers to efficiently document, register and trace receipt, storage or delivery of goods, the presented solution is built on hands-free digital tools with AR technology in commercially available smart glasses. Similarly, workers who execute complex assembly operations frequently require either assistance or support for the next assembly step. Depending on the context, relevant assembly process information is automatically displayed together with the environment in the AR smart glass. Thus, the operator is supported by the presented hands-free-tool to complete the next challenging tasks. Currently, teaching is being transferred from physical class-room teaching to remote or hybrid education. For this purpose, Virtual Reality (VR) provides a very welcome opportunity to complement in-presence teaching with exposure to examples of real manufacturing operations captured in videos of industrial case studies. Students apply learnings from theoretical classes to manufacturing case studies by identifying best practices and also recognizing waste. The presentation shares experience in teaching of lean methods based on AR technology to graduate engineering students. [less ▲]

Detailed reference viewed: 72 (2 UL)
Full Text
Peer Reviewed
See detailHighlighting chemical bonding between nylon-6.6 and the native oxide from an aluminum sheet assembled by laser welding
Hirchenhahn,, Pierre; Alsayyad, Adham Ayman Amin UL; Bardon, Julien et al

in ACS Applied Polymer Materials (2020)

Polymer/metal hybrid assemblies are well suited for automotive and biomedical applications because of their ability to create lightweight structures with a wide range of design possibilities. Laser ... [more ▼]

Polymer/metal hybrid assemblies are well suited for automotive and biomedical applications because of their ability to create lightweight structures with a wide range of design possibilities. Laser welding is a promising technique for joining dissimilar materials thanks to its quickness, freedom of design and absence of adhesives. Still, the fundamental causes of adhesion in hybrid laser welding remain not well understood. Therefore the present work aims at highlighting a chemical bonding between a polymer, nylon-6.6 and a metal, aluminum. To access the interface information, the samples were first broken, leaving a residue on the surface, which was dissolved afterwards. The chemical reactive sites of nylon molecule able to react with aluminum surface were suggested and the feasibility of these reactions was analyzed in the light of the results obtained by means of X-ray photoelectron spectroscopy (XPS) and Time of flight secondary electron microscopy (ToF-SIMS). [less ▲]

Detailed reference viewed: 64 (6 UL)
Full Text
Peer Reviewed
See detailAgent-based, hybrid control architecture for optimized and flexible production scheduling and control in remanufacturing
Groß, Sebastian UL; Gerke, Wolfgang; Plapper, Peter UL

in Journal of Remanufacturing (2020), (2020),

Introduction: Motivated by high ecological and economical potentials and driven by new laws, remanufacturing is receiving increasing attention as a process that puts used products into “as good as new or ... [more ▼]

Introduction: Motivated by high ecological and economical potentials and driven by new laws, remanufacturing is receiving increasing attention as a process that puts used products into “as good as new or better” condition. Within this process, there are many challenges, which are unseen in manufacturing, such as the uncertainties resulting from unknown conditions of the used products. This places special demands on the control of the remanufacturing system (RS). Methodology: To handle these uncertainties an agent-based hybrid control architecture comprising centralized and decentralized components is presented. In the former, the scheduling takes place including the consideration of the use of automated guided vehicles (AGV) to realize flexible material handling within the RS. The scheduling of machines and AGVs is thereby considered simultaneously and not separately, as it is the case in currently available control systems. For the optimization of the simultaneous scheduling Constraint Programming (CP) is used. In the decentralized component, all participants within the RS will be networked as a cyber-physical system and controlled by respective agents. These agents can communicate with each other in order to find solutions. The architecture is implemented as a multi-agent system. Results: Simulation results, using benchmark instances, show that simultaneous scheduling results in a 19.7% reduction of the makespan. Furthermore, the CP-based approach delivers the best results, compared to other approaches for simultaneous scheduling, which are also achieved in a significantly shorter computing time. [less ▲]

Detailed reference viewed: 75 (7 UL)
Full Text
Peer Reviewed
See detailMensch-Roboter-Kollaboration in der Domäne Refabrikation – State-of-the-Art und Ausblick
Groß, Sebastian UL; Gerke, Wolfgang; Plapper, Peter UL

in Jäkel, Jens; Thiel, Robert (Eds.) Tagungsband AALE 2020 Automatisierung und Mensch-Technik-Interaktion (2020, March 05)

Detailed reference viewed: 87 (0 UL)
Full Text
Peer Reviewed
See detailAgentenbasierte, hybride Steuerungsarchitektur für cyberphysische Refabrikationssysteme
Groß, Sebastian UL; Gerke, Wolfgang; Plapper, Peter UL

in Jäkel, Jens; Thiel, Robert (Eds.) Tagungsband AALE 2020 Automatisierung und Mensch-Technik-Interaktion (2020, March 05)

Detailed reference viewed: 81 (3 UL)