References of "Pires Pacheco, Maria Irene 50002864"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailLoss of Ambra1 promotes melanoma growth and invasion.
Di Leo, Luca; Bodemeyer, Valérie; Bosisio, Francesca M. et al

in Nature communications (2021), 12(1), 2550

Melanoma is the deadliest skin cancer. Despite improvements in the understanding of the molecular mechanisms underlying melanoma biology and in defining new curative strategies, the therapeutic needs for ... [more ▼]

Melanoma is the deadliest skin cancer. Despite improvements in the understanding of the molecular mechanisms underlying melanoma biology and in defining new curative strategies, the therapeutic needs for this disease have not yet been fulfilled. Herein, we provide evidence that the Activating Molecule in Beclin-1-Regulated Autophagy (Ambra1) contributes to melanoma development. Indeed, we show that Ambra1 deficiency confers accelerated tumor growth and decreased overall survival in Braf/Pten-mutated mouse models of melanoma. Also, we demonstrate that Ambra1 deletion promotes melanoma aggressiveness and metastasis by increasing cell motility/invasion and activating an EMT-like process. Moreover, we show that Ambra1 deficiency in melanoma impacts extracellular matrix remodeling and induces hyperactivation of the focal adhesion kinase 1 (FAK1) signaling, whose inhibition is able to reduce cell invasion and melanoma growth. Overall, our findings identify a function for AMBRA1 as tumor suppressor in melanoma, proposing FAK1 inhibition as a therapeutic strategy for AMBRA1 low-expressing melanoma. [less ▲]

Detailed reference viewed: 33 (2 UL)
Full Text
Peer Reviewed
See detailA dynamic multi-tissue model to study human metabolism.
Martins Conde, Patricia UL; Pfau, Thomas; Pires Pacheco, Maria Irene UL et al

in NPJ systems biology and applications (2021), 7(1), 5

Metabolic modeling enables the study of human metabolism in healthy and in diseased conditions, e.g., the prediction of new drug targets and biomarkers for metabolic diseases. To accurately describe blood ... [more ▼]

Metabolic modeling enables the study of human metabolism in healthy and in diseased conditions, e.g., the prediction of new drug targets and biomarkers for metabolic diseases. To accurately describe blood and urine metabolite dynamics, the integration of multiple metabolically active tissues is necessary. We developed a dynamic multi-tissue model, which recapitulates key properties of human metabolism at the molecular and physiological level based on the integration of transcriptomics data. It enables the simulation of the dynamics of intra-cellular and extra-cellular metabolites at the genome scale. The predictive capacity of the model is shown through the accurate simulation of different healthy conditions (i.e., during fasting, while consuming meals or during exercise), and the prediction of biomarkers for a set of Inborn Errors of Metabolism with a precision of 83%. This novel approach is useful to prioritize new biomarkers for many metabolic diseases, as well as for the integration of various types of personal omics data, towards the personalized analysis of blood and urine metabolites. [less ▲]

Detailed reference viewed: 78 (13 UL)
Full Text
See detailTesting informed SIR based epidemiological model for COVID-19 in Luxembourg
Sauter, Thomas UL; Pires Pacheco, Maria Irene UL

E-print/Working paper (2020)

The interpretation of the number of COVID-19 cases and deaths in a country or region is strongly dependent on the number of performed tests. We developed a novel SIR based epidemiological model (SIVRT ... [more ▼]

The interpretation of the number of COVID-19 cases and deaths in a country or region is strongly dependent on the number of performed tests. We developed a novel SIR based epidemiological model (SIVRT) which allows the country-specific integration of testing information and other available data. The model thereby enables a dynamic inspection of the pandemic and allows estimating key figures, like the number of overall detected and undetected COVID-19 cases and the infection fatality rate. As proof of concept, the novel SIVRT model was used to simulate the first phase of the pandemic in Luxembourg. An overall number of infections of 13.000 and an infection fatality rate of 1,3 was estimated, which is in concordance with data from population-wide testing. Furthermore based on the data as of end of May 2020 and assuming a partial deconfinement, an increase of cases is predicted from mid of July 2020 on. This is consistent with the current observed rise and shows the predictive potential of the novel SIVRT model. [less ▲]

Detailed reference viewed: 91 (9 UL)
Full Text
Peer Reviewed
See detailTowards the routine use of in silico screenings for drug discovery using metabolic modelling
Bintener, Tamara Jean Rita UL; Pires Pacheco, Maria Irene UL; Sauter, Thomas UL

in Biochemical Society Transactions (2020)

Currently, the development of new effective drugs for cancer therapy is not only hindered by development costs, drug efficacy, and drug safety but also by the rapid occurrence of drug resistance in cancer ... [more ▼]

Currently, the development of new effective drugs for cancer therapy is not only hindered by development costs, drug efficacy, and drug safety but also by the rapid occurrence of drug resistance in cancer. Hence, new tools are needed to study the underlying mechanisms in cancer. Here, we discuss the current use of metabolic modelling approaches to identify cancer-specific metabolism and find possible new drug targets and drugs for repurposing. Furthermore, we list valuable resources that are needed for the reconstruction of cancer-specific models by integrating various available datasets with genome-scale metabolic reconstructions using model-building algorithms. We also discuss how new drug targets can be determined by using gene essentiality analysis, an in silico method to predict essential genes in a given condition such as cancer and how synthetic lethality studies could greatly benefit cancer patients by suggesting drug combinations with reduced side effects. [less ▲]

Detailed reference viewed: 78 (4 UL)