![]() ; Shankar, Bhavani ![]() ![]() in Proceedings of 40th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2015 (2015, April) Efficient power amplification is inherently a non linear operation that introduces unwanted interference in the amplified signal. Strong inter-symbol interference is generated when the amplifier non ... [more ▼] Efficient power amplification is inherently a non linear operation that introduces unwanted interference in the amplified signal. Strong inter-symbol interference is generated when the amplifier non linearity is combined with channel memory effects. Further, signals with very high peak to average power ratio, typical of multiple carrier systems, are even more sensitive to the non linearities resulting in severe distortion effects. Signal pre-clipping (crest factor reduction) and predistortion are conventional countermeasure techniques to reduce the generated non linear distortion and improve power and spectral efficiency. In this work, novel optimization methods for predistortion and pre-clipping are analytically derived for a general non-linear communication channel with memory. A combined architecture in which crest factor reduction is followed by signal predistortion is proposed and the parameters are estimated resorting to iterative algorithms based on least squares method. Performance evaluation of the estimation techniques shows the effectiveness of the derived algorithms and significant gain compared to previously known methods. [less ▲] Detailed reference viewed: 102 (1 UL)![]() ; ; et al in Communications, IET (2015), 9(16), 2053--2059 A digital predistortion (DPD) scheme is presented for non-linear distortion mitigation in multi-carrier satellite communication channels. The proposed DPD has a multiple-input multiple-output architecture ... [more ▼] A digital predistortion (DPD) scheme is presented for non-linear distortion mitigation in multi-carrier satellite communication channels. The proposed DPD has a multiple-input multiple-output architecture similar to data DPD schemes. However, it enhances the mitigation performance of data DPDs using a multi-rate processing algorithm to achieve spectrum broadening of non-linear operators. Compared to single carrier (single-input single-output) signal (waveform) DPD schemes, the proposed DPD has lower digital processing rate reducing the required hardware cost of the predistorter. The proposed DPD outperforms, in total degradation, both data and signal DPD schemes. Further, it performs closest to a channel bound described by an ideally mitigated channel with limited maximum output power. © 2015. The Institution of Engineering and Technology. [less ▲] Detailed reference viewed: 206 (1 UL) |
||