References of "Phan, Sebastien A"
     in
Bookmark and Share    
See detailMitochondrial morphology provides a mechanism for energy buffering at synapses
Garcia, Guadalupe Clara UL; Bartol, Thomas M.; Phan, Sebastien A. et al

E-print/Working paper (2019)

Mitochondria as the main energy suppliers of eukaryotic cells are highly dynamic organelles that fuse, divide and are transported along the cytoskeleton to ensure cellular energy homeostasis. While these ... [more ▼]

Mitochondria as the main energy suppliers of eukaryotic cells are highly dynamic organelles that fuse, divide and are transported along the cytoskeleton to ensure cellular energy homeostasis. While these processes are well established, substantial evidence indicates that the internal structure is also highly variable in dependence on metabolic conditions. However, a quantitative mechanistic understanding of how mitochondrial morphology affects energetic states is still elusive. To address this question, we here present an agent-based dynamic model using three-dimensional morphologies from electron microscopy tomography which considers the molecular dynamics of the main ATP production components. We apply our modeling approach to mitochondria at the synapse which is the largest energy consumer within the brain. Interestingly, comparing the spatiotemporal simulations with a corresponding space-independent approach, we find minor space dependence when the system relaxes toward equilibrium but a qualitative difference in fluctuating environments. These results suggest that internal mitochondrial morphology is not only optimized for ATP production but also provides a mechanism for energy buffering and may represent a mechanism for cellular robustness. [less ▲]

Detailed reference viewed: 89 (8 UL)