References of "Pfau, Thomas"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailProject-based learning course on metabolic network modelling in computational systems biology.
Sauter, Thomas UL; Bintener, Tamara; Kishk, Ali UL et al

in PLoS computational biology (2022), 18(1), 1009711

Project-based learning (PBL) is a dynamic student-centred teaching method that encourages students to solve real-life problems while fostering engagement and critical thinking. Here, we report on a PBL ... [more ▼]

Project-based learning (PBL) is a dynamic student-centred teaching method that encourages students to solve real-life problems while fostering engagement and critical thinking. Here, we report on a PBL course on metabolic network modelling that has been running for several years within the Master in Integrated Systems Biology (MISB) at the University of Luxembourg. This 2-week full-time block course comprises an introduction into the core concepts and methods of constraint-based modelling (CBM), applied to toy models and large-scale networks alongside the preparation of individual student projects in week 1 and, in week 2, the presentation and execution of these projects. We describe in detail the schedule and content of the course, exemplary student projects, and reflect on outcomes and lessons learned. PBL requires the full engagement of students and teachers and gives a rewarding teaching experience. The presented course can serve as a role model and inspiration for other similar courses. [less ▲]

Detailed reference viewed: 31 (3 UL)
Full Text
Peer Reviewed
See detailIDARE2-Simultaneous Visualisation of Multiomics Data in Cytoscape.
Pfau, Thomas; Galhardo, Mafalda; Lin, Jake et al

in Metabolites (2021), 11(5),

Visual integration of experimental data in metabolic networks is an important step to understanding their meaning. As genome-scale metabolic networks reach several thousand reactions, the task becomes ... [more ▼]

Visual integration of experimental data in metabolic networks is an important step to understanding their meaning. As genome-scale metabolic networks reach several thousand reactions, the task becomes more difficult and less revealing. While databases like KEGG and BioCyc provide curated pathways that allow a navigation of the metabolic landscape of an organism, it is rather laborious to map data directly onto those pathways. There are programs available using these kind of databases as a source for visualization; however, these programs are then restricted to the pathways available in the database. Here, we present IDARE2 a cytoscape plugin that allows the visualization of multiomics data in cytoscape in a user-friendly way. It further provides tools to disentangle highly connected network structures based on common properties of nodes and retains structural links between the generated subnetworks, offering a straightforward way to traverse the splitted network. The tool is extensible, allowing the implementation of specialised representations and data format parsers. We present the automated reproduction of the original IDARE nodes using our tool and show examples of other data being mapped on a network of E. coli. The extensibility is demonstrated with two plugins that are available on github. IDARE2 provides an intuitive way to visualise data from multiple sources and allows one to disentangle the often complex network structure in large networks using predefined properties of the network nodes. [less ▲]

Detailed reference viewed: 50 (2 UL)
Full Text
Peer Reviewed
See detailA dynamic multi-tissue model to study human metabolism.
Martins Conde, Patricia UL; Pfau, Thomas; Pires Pacheco, Maria Irene UL et al

in NPJ systems biology and applications (2021), 7(1), 5

Metabolic modeling enables the study of human metabolism in healthy and in diseased conditions, e.g., the prediction of new drug targets and biomarkers for metabolic diseases. To accurately describe blood ... [more ▼]

Metabolic modeling enables the study of human metabolism in healthy and in diseased conditions, e.g., the prediction of new drug targets and biomarkers for metabolic diseases. To accurately describe blood and urine metabolite dynamics, the integration of multiple metabolically active tissues is necessary. We developed a dynamic multi-tissue model, which recapitulates key properties of human metabolism at the molecular and physiological level based on the integration of transcriptomics data. It enables the simulation of the dynamics of intra-cellular and extra-cellular metabolites at the genome scale. The predictive capacity of the model is shown through the accurate simulation of different healthy conditions (i.e., during fasting, while consuming meals or during exercise), and the prediction of biomarkers for a set of Inborn Errors of Metabolism with a precision of 83%. This novel approach is useful to prioritize new biomarkers for many metabolic diseases, as well as for the integration of various types of personal omics data, towards the personalized analysis of blood and urine metabolites. [less ▲]

Detailed reference viewed: 117 (17 UL)