References of "Peter, Sarah"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailIntestinal-Cell Kinase and Juvenile Myoclonic Epilepsy.
Lerche, Holger; Berkovic, Sam F.; Lowenstein, Daniel H. et al

in New England Journal of Medicine (2019), 380(16), 24

With regard to the article by Bailey et al. (March 15, 2018, issue) on the potential role of variants in the gene encoding intestinal cell kinase (ICK) in genetic generalized epilepsies, including ... [more ▼]

With regard to the article by Bailey et al. (March 15, 2018, issue) on the potential role of variants in the gene encoding intestinal cell kinase (ICK) in genetic generalized epilepsies, including juvenile myoclonic epilepsy: We attempted replication by rechecking for enrichment of ICK variants in two previously published analyses of mainly familial cases of genetic generalized epilepsy, which included a total of 1149 cases of genetic generalized epilepsy and 5911 ethnically matched controls. We analyzed the burden of single-gene rare variants with the use of whole exome sequencing data, applying population stratification and both sample and variant quality control. We found no evidence of an enrichment of ICK variants in genetic generalized epilepsies or juvenile myoclonic epilepsy. Specifically, we did not detect a nonsynonymous variant in 357 persons with juvenile myoclonic epilepsy at a minor allele frequency at or below 0.1%. Although we cannot exclude the possibility that ICK variants may be population-specific risk factors for juvenile myoclonic epilepsy, the lack of validation in our cohorts does not support a true disease association but rather suggests that the authors’ results may be due to chance, possibly owing to methodologic issues (see the Supplementary Appendix, available with the full text of this letter at NEJM.org). [less ▲]

Detailed reference viewed: 140 (5 UL)
Full Text
Peer Reviewed
See detailRare coding variants in genes encoding GABAA receptors in genetic generalised epilepsies: an exome-based case-control study
May, Patrick UL; Girard, Simon; Harrer, Merle et al

in Lancet Neurology (2018), 17(8), 699-708

Background Genetic generalised epilepsy is the most common type of inherited epilepsy. Despite a high concordance rate of 80% in monozygotic twins, the genetic background is still poorly understood. We ... [more ▼]

Background Genetic generalised epilepsy is the most common type of inherited epilepsy. Despite a high concordance rate of 80% in monozygotic twins, the genetic background is still poorly understood. We aimed to investigate the burden of rare genetic variants in genetic generalised epilepsy. Methods For this exome-based case-control study, we used three different genetic generalised epilepsy case cohorts and three independent control cohorts, all of European descent. Cases included in the study were clinically evaluated for genetic generalised epilepsy. Whole-exome sequencing was done for the discovery case cohort, a validation case cohort, and two independent control cohorts. The replication case cohort underwent targeted next-generation sequencing of the 19 known genes encoding subunits of GABAA receptors and was compared to the respective GABAA receptor variants of a third independent control cohort. Functional investigations were done with automated two-microelectrode voltage clamping in Xenopus laevis oocytes. Findings Statistical comparison of 152 familial index cases with genetic generalised epilepsy in the discovery cohort to 549 ethnically matched controls suggested an enrichment of rare missense (Nonsyn) variants in the ensemble of 19 genes encoding GABAA receptors in cases (odds ratio [OR] 2·40 [95% CI 1·41–4·10]; pNonsyn=0·0014, adjusted pNonsyn=0·019). Enrichment for these genes was validated in a whole-exome sequencing cohort of 357 sporadic and familial genetic generalised epilepsy cases and 1485 independent controls (OR 1·46 [95% CI 1·05–2·03]; pNonsyn=0·0081, adjusted pNonsyn=0·016). Comparison of genes encoding GABAA receptors in the independent replication cohort of 583 familial and sporadic genetic generalised epilepsy index cases, based on candidate-gene panel sequencing, with a third independent control cohort of 635 controls confirmed the overall enrichment of rare missense variants for 15 GABAA receptor genes in cases compared with controls (OR 1·46 [95% CI 1·02–2·08]; pNonsyn=0·013, adjusted pNonsyn=0·027). Functional studies for two selected genes (GABRB2 and GABRA5) showed significant loss-of-function effects with reduced current amplitudes in four of seven tested variants compared with wild-type receptors. Interpretation Functionally relevant variants in genes encoding GABAA receptor subunits constitute a significant risk factor for genetic generalised epilepsy. Examination of the role of specific gene groups and pathways can disentangle the complex genetic architecture of genetic generalised epilepsy. [less ▲]

Detailed reference viewed: 81 (17 UL)
Full Text
See detailLarge-scale research data management: Road to GDPR compliance
Bouvry, Pascal UL; Varrette, Sébastien UL; Plugaru, Valentin UL et al

Presentation (2018, April)

Detailed reference viewed: 118 (10 UL)